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McDowell’s 1985 electronic bath theory of charge transfer is used to investigate the effect of

varying surface temperature on the process of ion scattering from a solid surface. As a specific

example, the system of Na! scattered from W is modeled. The neutralization probability is found

to have a significant temperature dependence only if the ion orbital energy is fairly close !within 1
eV" to the Fermi level, at closest approach. As well, the temperature effect is greatest when the ion’s
incident energy is small !on the order of a few eV". © 2000 American Institute of Physics.
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I. INTRODUCTION

The mechanisms of charge transfer during ion scattering

from solid surfaces have been extensively studied for a num-

ber of years.1–3 However, most theoretical studies have con-

sidered only the situation of zero temperature, although ex-

perimental evidence indicates that charge-transfer

probabilities are temperature dependent, at least under some

conditions. In one investigation, Overbosch et al.4 measured

the neutral flux of Na atoms scattered from W!110" as a
function of temperature. At relatively low incident energies

!30 eV", a ‘‘huge’’ effect was observed, diminishing with
increasing incident energy. The neutral fraction was always

seen to increase with temperature. In another set of experi-

ments, Bu et al.5 measured the ion yields formed from scat-

tering Na, K, and Cs atoms from a Si!111" surface. For small
incident energies !" 3 eV", the ion yield was observed to rise
with increasing temperature. However, when the incident en-

ergy was greater than 15 eV, the ion yield was seen to be

effectively independent of temperature.

From a theoretical perspective, several approaches have

been used. Overbosch et al.4 used the rate equation approach

to analyze their experimental data, and they found reasonable

agreement between theory and experiment, except at low in-

cident energy. Brako and Newns6 worked with the equations

of motion for the time-dependent Anderson–Newns Hamil-

tonian. The theory was found to be compatible with experi-

ment, except at low temperatures.

Very recently, Merino and Marston7 used the dynamical

1/N expansion method, primarily to study the Kondo effect,

but also obtained ion fractions as a function of temperature.

In looking at the situation of Ca atoms scattered from a

Cu!001" surface, the ion yield was seen to increase with
temperature. The drawback to their approach is that there is a

very large set of differential equations to be solved numeri-

cally, which is computationally intensive. The above studies

all modeled temperature effects by varying the occupancies

of excited electronic states with temperature. One may

speculate that thermal motion of substrate atoms may also

make a contribution, but recent calculations8 indicate that

such effects are negligibly small.

The current study adopts the electronic bath approach of

McDowell9 to investigate the influence of temperature on the

resonant charge-transfer process occurring during ion/atom

scattering from a solid surface. The one-electron theory ig-

nores nuclear motions in the solid, and is devised analo-

gously to generalized Langevin theory. The specific system

under study is that of Na ions, with incident energies of a

few eV, scattered from a W surface, whose work function is

varied to simulate partial covering by adatoms.

II. MODEL

The model used here is that formulated by McDowell,9

with parameters chosen in order to simulate the scattering of

Na! or Na0 from W, with varying work function and surface

temperature, at low incident kinetic energies. For brevity,

we present here only the highlights of the method, and refer

the reader to McDowell’s paper9 for the details of the

derivations.

The starting point is the assumption that the system may

be described by a one-electron Hamiltonian of the form

H! t "#%0c0
!! t "c0! t "!V! t "#c0

!! t "c1! t "!c1
!! t "c0! t "$
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#cm
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where cm(t)#cm
!(t)$ is an annihilation !creation" operator for

atomic orbital m, in the Heisenberg representation. The sub-

script 0 labels the sole orbital on the projectile, and subscript
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m labels those on the solid !with N large", with m#1 desig-

nating the target atom on the surface. It is assumed that the

projectile orbital interacts only with that on the target atom.

The Heisenberg equations of motion for the annihilation op-

erators are

dcm! t "

dt
#i#H! t ",cm! t "$ . !2"

A direct approach is to attempt to solve Eq. !2" either
analytically or numerically. As an alternative, McDowell

proposed an ‘‘electronic bath’’ approach in which the Eq. !2"
is reworked into a form similar to that seen in generalized

Langevin theory. The idea is to separate the orbitals into

those for the ion !which here consists of just one orbital", a
primary zone !containing the p solid orbitals nearest the sur-
face", and an electron bath !consisting of the remaining N– p
solid orbitals". The key feature of the method is that the
differential equations for the orbitals in the bath are removed

from the system !2", being replaced by a memory kernel and
a driving term !which typically must be approximated".

McDowell’s approach ultimately formulates equations

of motion for ensemble-averaged number operators on the

ion and in the primary zone, and these take the following

form:
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with n j i*#n i j . The initial conditions for !3" are

n00!$) "#0, !4a"

n0i!$) "#n i0!$) "#0, !4b"

n i j!$) "#* i jN% i j
!T ", !4c"

where the Fermi–Dirac distribution is denoted by

N% i j
!T "#+1!exp#!% i j$% f "/bT$,$1. !5"

In !5", b is the Boltzmann constant, % f is the Fermi level, and

% i j#!% i!% j"/2, !6"

% i being the energy of the ith zone orbital. The set of equa-
tions !3" may be solved numerically. The main quantity of
interest is the neutralization probability P#n00()), repre-
senting the occupancy of the projectile orbital after scatter-

ing, with P#0 corresponding to positive ionization, and P

#1 to neutralization.

The coefficients H0i take the form

H0i#H i0#v iV! t ". !7"

For the Huckel-type chain of length p, one obtains9,10
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As indicated earlier, the system to be modeled here is

Na!–W. To this end, the parameters & and ( are chosen to
have values of $5 and $1.75 eV, respectively, to reproduce

the band edges of W.11 The interaction potential is taken to

have the form12

V! t "#V!z! t ""#Fz! t "exp!$.z! t "", !11"

where F is a constant force, given by !13" below, and z(t) is
the projectile trajectory, assumed to have Born–Mayer

form13 given from

exp!2az! t ""#!A/K "cosh2!avt ", !12"

with K(v) the initial kinetic energy !speed" of the projectile.
The Born–Mayer inverse-length and energy parameters have

the values14 2a#1.9232 a.u. and A#517.63 a.u., respec-

tively. The interaction parameters in !11" have values given
from the rules

F#!I0I1"
1/2, !13"

2.#!2I0"
1/2

!!2I1"
1/2, !14"

where the ionization potentials are I0#0.1889 a.u. for Na

and I1#0.2933 a.u. for W. These give F#0.162 a.u. and .
#0.69 a.u. To simulate image effects, the ion orbital energy

%0 is given a dependence on the ion-surface separation z,

namely

%0!z "#

1

4z
$I0 . !15"

For the calculations reported here, a primary zone of size

p#20 was found to be large enough to produce convergent

results. The results were found to be independent of the

value of the initial condition !4a", namely 0 for Na! or 1 for

Na0, which shows the ‘‘memory-less’’ nature of the system.

III. RESULTS AND DISCUSSION

Several calculations were made using the model of Sec.

II, and some representative results are presented here. The

surface temperature T was varied in the range 0 to 2000 K.

The Fermi level % f was varied from $6 to $1.5 eV, to

simulate partial coverages of the surface by adsorbates. Sev-

eral incident kinetic energies K were used, although the most

noticeable effect was observed for the lowest !K#5 eV in

this work".
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Figure 1 shows the neutralization probability P, ex-

pressed as a percentage, as a function of temperature, for

several values of % f , and with K#5 eV. Most immediately

obvious is the fact that P is essentially independent of T, for

most values of % f . The exceptions occur when % f#$4 and

$4.5 eV, where it is seen that P is a more strongly varying

function of T. !More precisely, the variation in P is about
12% to 14%." For other values of % f , the variation in P is

less than 2%. Another obvious feature is that, for low Fermi

levels !/$4 eV", the neutralization probability is small !less
than 40%", while, for high Fermi levels !0$3 eV", it is large
!greater than 90%". Thus, as % f is varied from $4 to $3 eV,

P increases rapidly, regardless of temperature.

In order to understand these features, it is important to

recognize that the ion orbital interacts mainly with solid or-

bitals of approximately the same energy. As the ion scatters

from the surface, its orbital energy %0 !15" varies between
$5.14 and $3.5 eV, so states in the solid in that energy

range need to be considered. We look first at the situation

where T#0. When the Fermi level is low !e.g., $6 eV", the
states with energies in the most interactive range are unoc-

cupied and, since %0%% f , the tendency for any electron on

the projectile is to transfer into a !lower-energy" orbital in the
solid, so the neutral fraction tends to be low. As the Fermi

level is raised !e.g., $5 eV", the most interactive states start
to become filled, thereby dampening this effect, and raising

P. When the Fermi level has become high !e.g., $3 eV", the
states in the interactive range are all filled; then, if the pro-

jectile orbital is empty, there is a high probability that an

electron from the solid will transfer to it, thereby neutralizing

it, and P is expected to be large.

We turn now to the case where T%0. Here, the location

of the Fermi level is of the utmost importance. This is be-

cause, as T increases, only states near the Fermi level have

their occupancies change appreciably #as may be seen from
the Fermi–Dirac distribution !5"$. States not near the Fermi
level will have the same occupancies !either 0 or 1" at all
temperatures under consideration here. Therefore, a tempera-

ture effect is expected to occur only when the states near the

Fermi level are heavily involved in the charge-transfer pro-

cess, that is to say, strongly interacting with the ion orbital.

As we have seen, this situation occurs when %% f$%0% is
small. When %% f$%0% is large, the ion orbital has little inter-
action with the states near the Fermi level, and so the charge-

transfer process should be essentially independent of the

temperature. This is clearly seen to be the case in Fig. 1, for

both % f0$3 eV and % f/$5 eV.

In the case where %% f$%0% is fairly small, the ion orbital
interacts strongly with states near the Fermi level !whose
occupancies change considerably with T", and thus a notice-
able temperature effect should be observed. The results in

Fig. 1 confirm this expectation !% f#$3.5, $4, $4.5 eV", as
the neutralization probability P is seen to change by 10% or

more, as T varies from 0 to 2000 K. Interestingly, it is seen

that P may be either an increasing or decreasing function of

T, depending upon the value of % f . As T increases, states just

above the Fermi level have their occupancies increased,

while those just below the Fermi level have theirs decreased.

All these states are interacting strongly with the ion state: the

occupied states tend to increase P and the unoccupied ones

tend to decrease P; the states which prove to be dominant

determine the final value of P.

The effect of increasing the projectile’s kinetic energy K

to 25 eV is shown in Fig. 2. It is seen that the situation is

qualitatively the same as for K#5 eV, although the variation

in P with temperature is somewhat smaller. Increasing K

further, e.g., to 100 eV !not shown", produces a further de-
crease in the temperature effect.

It may be noticed that the values of P in Fig. 2 are about

the same as, or slightly lower than, the corresponding values

in Fig. 1, except for the cases % f#$3.5 and $4 eV, where

they are substantially lower. To understand this feature, we

must keep in mind the earlier point about the value of P

being determined by the size of %% f$%0%, and also note that
!15" implies that %0 depends on K, because the trajectory

z(t) does. When %0()) is well below the Fermi level !as
happens when % f#$1.5 eV, for example", then %0(z) also
stays well below the Fermi level throughout the interaction,

and a high neutralization probability results. If %0())&% f ,

then this occurs essentially independently of the value of K,

so P does not vary much with K. A similar argument may be

FIG. 1. Neutralization probability P, expressed as a percentage, versus tem-

perature T, with projectile kinetic energy K#5 eV, for various Fermi levels

% f as marked.

FIG. 2. As in Fig. 1, but with K#25 eV.
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made when %0())'% f to conclude that here also P should

not depend strongly on K. It is only when %0(z) is close to
% f , for at least part of the interaction, that the value of P has

a stronger dependence on %0 , and hence on K, resulting in
significant variation of P with K. This situation occurs for the

intermediate values of % f !$3.5 and $4 eV in our figures".
We can make a comparison to the experimental results

of Overbosch et al.4 !specifically their Fig. 3", although a
quantitative comparison is hampered by the fact that their

detector could measure the neutral flux in only arbitrary !not
absolute" units. The experiments4 suggest that the tempera-
ture effect is quite large for K#30 eV, and becomes smaller

for larger K. On the other hand, the theory here shows a more

modest-sized effect, even for smaller K, but agrees with ex-

periment regarding the decrease of the effect for larger K. In

the experiments,4 the neutral fraction always increases with

T, but they were done with a fixed Fermi level !about $5.2

eV". The theory here suggests that a richer variety of behav-
ior is possible, depending on the position of the Fermi level.
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