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A general framework for performing event-driven simulations of systems with semiflexible or rigid

bodies interacting under impulsive forces is outlined. The method consists of specifying a means of

computing the free evolution of constrained motion, evaluating the times at which interactions

occur, and determining the consequences of interactions on subsequent motion. Algorithms for

computing the times of interaction events and carrying out efficient event-driven simulations are

discussed. The semiflexible case and the rigid case differ qualitatively in that the free motion of a

rigid body can be computed analytically and need not be integrated numerically. © 2007 American

Institute of Physics. #DOI: 10.1063/1.2434957$

I. INTRODUCTION

There has been an increasing interest over the last de-

cade in performing large-scale simulations of colloidal sys-

tems, proteins, micelles, and other biological assemblies.

Simulating such systems, and the phenomena that take place

in them, typically requires a description of dynamical events

that occur over a wide range of time scales. Nearly all simu-

lations of such systems to date are based on following the

microscopic time evolution of the system by integration of

the classical equations of motion. Usually, due to the com-

plexity of inter- and intramolecular interactions, this integra-

tion is carried out in a step-by-step numerical fashion pro-

ducing a time ordered set of phase-space points !a
trajectory". This information can then be used to calculate

thermodynamic properties, structural functions, or transport

coefficients. An alternative approach, which has been em-

ployed in many contexts, is to use step potentials to approxi-

mate inter- and intramolecular interactions while affording

the analytical solution of the dynamics.
1–5

The simplification

in the interaction potential can lead to an increase in simula-

tion efficiency since the demanding task of calculating forces

is reduced to computing momentum exchanges between bod-

ies at the instant of interaction. This approach is called event-

driven or discontinuous molecular dynamics !DMD".
In the DMD approach, various components of the sys-

tem interact via discontinuous interactions, leading to impul-

sive forces that act at specific moments of time. As a result,

the motion of particles is free of inter- and intramolecular

forces between impulsive events that alter the trajectory of

bodies via discontinuous jumps in the momenta of the sys-

tem at discrete interaction times. To determine the dynamics,

the basic interaction rules of how the !linear and angular"
momenta of the body are modified by inter- and intramolecu-

lar collisions must be specified.

For molecular systems with internal degrees of freedom,

it is straightforward to design fully flexible models with dis-

continuous potentials, but DMD simulations of such systems

are often inefficient due to the relatively high frequency of

internal motions.
6

This inefficiency is reflected by the fact

that most collision events executed in a DMD simulation

correspond to intra rather than intermolecular interactions.

On the other hand, much of the physics relevant in large-

scale simulations is insensitive to details of intramolecular

motion at long times. For this reason, methods of incorporat-

ing constraints into the dynamics of systems with continuous

potentials have been developed that eliminate high frequency

internal motion, and thus extend the time scales accessible to

simulation. Surprisingly, relatively little work has appeared

in the literature on incorporating such constraints into DMD

simulations. The goals of this paper are to extend the appli-

cability of DMD methods to include constrained systems and

to outline efficient methods that are generally applicable in

the simulations of semiflexible and rigid bodies interacting

via discontinuous potentials.

In contrast to systems containing only simple spherical

particles with single interaction sites,
4–8

the application of

DMD methods to constrained systems is complicated by two

main challenges. The first challenge is to solve the dynamics

of the system so that the position, velocity, or angular veloc-

ity of any part of the system can be obtained exactly. In

principle, this is possible for a rigid body moving in the

absence of forces and torques, even if it does not possess an

axis of symmetry which facilitates its motion. However, an

explicit solution suitable for numerical implementation

seems to be missing in the literature !although partial an-

swers are abundant
9–14". For this reason, we will present the

explicit solution here. Armed with a solution of the dynamics

of all bodies in the system, one can calculate the collision

times in an efficient manner, and in some instances, analyti-

cally.

The second challenge is to determine how the impulsive

forces lead to discontinuous jumps in the momenta of the

interacting bodies. For complicated rigid or semiflexible
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bodies, the rules for computing the momentum jumps are not

immediately obvious. It is clear, however, that these jumps in

momenta must be consistent with basic conservation laws

connected to symmetries of the underlying Lagrangian char-

acterizing the dynamics. Often the basic Lagrangian is in-

variant to time and space translations, as well as rotations. As

a consequence of these symmetries, the rules governing col-

lisions must explicitly obey energy, momentum, and angular

momentum constraints. Such conservation laws can be uti-

lized as a guide to derive the proper collision rules.

A first attempt to introduce constraints into an event-

driven system was carried out by Ciccotti and Kalibaeva,
15

who studied a system of rigid, diatomic molecules !mimick-

ing liquid nitrogen". Furthermore, nonspherical bodies of a

special kind were treated by Donev et al.
16,17

by assuming

that all rotational motions in between interaction events were

that of a spherically symmetric body. More recently, a

spherically symmetric hard-sphere model with four tetrahe-

dral short ranged !sticky" interactions !mimicking water" has

been studied by De Michele et al.
18

with an event-driven

molecular dynamics simulation method similar to the most

basic scheme presented in this paper. This work primarily

focuses on the phase diagram of this “sticky” water model as

a prototype of network forming molecular systems. Our pur-

pose, in contrast, is to discuss a general framework that al-

lows one to carry out event-driven DMD simulations in the

presence of constraints and, in particular, for general rigid

bodies. The methodology is applicable to modeling the cor-

rect dynamics of water molecules in aqueous solutions,
19

as

well as other many body systems.

The paper is organized as follows: Section II discusses

the type of systems considered in this work followed by an

analysis of the equations of motions in the presence of con-

straints in Sec. III. Section IV discusses the calculation and

scheduling of collision times. The collision rules are derived

in Sec. V. Finally, conclusions are presented in Sec. VI.

II. CONSTRAINED SYSTEMS INTERACTING VIA
DISCONTINUOUS POTENTIALS

In this work we focus on molecular systems in which

some of the degrees of freedom are constrained under a set

of c time-independent holonomic constraints,

!"!rN" = 0, !1"

where the index " runs over all constraints present in the

system and rN is a generalized vector whose components are

the set of all Cartesian coordinates of the N total particles in

the system. Of particular interest are systems in which the

constraints involve clusters !molecules" of particles !atoms

or sites". Typically, a constraint equation fixes the distance

between sites i and j in each molecule to some value d ac-

cording to

!!rij" =
1

2 !rij
2 − d2" = 0. !2"

In general, there are not enough constraints to completely fix

the relative positions of all the sites in a molecule; such a

molecule is called semiflexible. In later sections, particular

attention will be devoted to the special case of rigid body

systems, in which all intramolecular distances remain fixed.

All interactions in the system are assumed to be express-

ible in terms of pairwise site-site discontinuous potentials,

where a typical interaction between sites i and j can be writ-

ten in the form

#!%ri − r j%" = &#0 if %ri − r j% $ dij

#1 if %ri − r j% % dij ,
' !3"

where dij is an interaction distance and #0 and #1 are con-

stants. There can be several of these kind of interactions per

pair of sites. Although typically the sites i and j are on dif-

ferent molecules, there may be intramolecular site-site inter-

actions for semiflexible molecules. If all interactions are of

this form, then the total system evolves freely until the dis-

tance between a pair of interaction sites attains the interac-

tion distance.

The simplest example of this kind of system consists of

two hard spheres of diameter d located at positions r j and ri

in a periodic box. If the two spheres are approaching one

another, the spheres evolve freely until the time of the system

approaches a value tc, where the distance between the two

centers of the hard spheres is equal to the diameter d. At this

time, the spheres elastically bounce off one another in a

hard-core collision in which the momenta of the spheres are

altered in a discontinuous fashion. Immediately after time tc,

the spheres once again evolve freely until the next interaction

time tc!, as determined by the distance criterion.

The principle of performing event-driven simulations of

constrained molecular systems is the same as that of simu-

lating hard-sphere systems. As the system has constant po-

tential energy between interaction events, the motion of the

constrained system is free and the trajectory of each mol-

ecule is independent of all others. The free propagation of

the system between events determines the evolution of the

spatial coordinates of the molecules in the system, and the

interaction times at which the momenta of the system change

discontinuously are determined by identifying the times at

which the distance between sites corresponds to a disconti-

nuity in the interaction potential. Even though this interac-

tion time is determined by the free motion of the system, in

general, it must be found numerically due to the mathemati-

cal complexity of the collision condition. The final ingredient

required to perform event-driven simulations of constrained

systems consists of specifying the collision rules of how the

momenta of the constituents in the molecular system are al-

tered at the interaction times.

In the following sections, we address each of these

points individually, paying particular attention to the special

case of rigid molecular systems for which a closed-form so-

lution of the free motion is available.

III. EQUATIONS OF MOTION WITH CONSTRAINTS

Typically, the free motion of constrained systems is not

exactly solvable and must be treated numerically. An excep-

tional case is the motion of a rigid body in the absence of

forces. Nonetheless, it is possible to develop a systematic

scheme for performing DMD simulations based on numeri-

cal trajectories of constrained systems. Since the trajectories
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of all molecules are independent in between interaction

events, it is sufficient to consider the motion of a single

molecule. In the following two subsections, the general

equations governing the free motion of semiflexible and rigid

bodies are presented.

A. Semiflexible dynamics

The equations of motion for a constrained body consist-

ing of sites i with mass mi and position ri are
20

mir̈i = − &"

#!"

#ri

, !4"

where the parameters &" are Lagrange multipliers that en-

force the distance constraints !". Here, as well as below,

explicit dependence on the time t will not be denoted. For

clarity throughout this paper, the Einstein summation con-

vention will be used for sums over repeated Greek indices,

i.e., &"!"()"=1
c &"!", whereas the sum over site indices will

be written explicitly.

Note that since intramolecular interactions are treated by

discontinuous potentials, they are not evident in Eq. !4", but

rather are treated as collision events !see Secs. IV and V".
While it is, in principle, possible to introduce smooth in-

tramolecular potentials in the presence of discontinuous in-

termolecular potentials, such systems will not be considered

here. Furthermore, external forces will also not be taken into

account in this paper.

These equations of motion must be supplemented by

equations for the c Lagrange multipliers &", which are func-

tions of time and follow from the requirement that !"=0.

Although the &" are not functions of rN and ṙN in a math-

ematical sense, it will be shown below that once the equa-

tions are solved, they can be expressed in terms of rN and ṙN.

Note that the equations of motion show that even in the

absence of an interaction potential, the motion of the point

masses !atoms" making up a rigid body !molecule" are non-

trivial due to the emergence of a constraint force

−&"#!" /#ri.

In fortuitous cases, the time dependence of the Lagrange

multipliers is relatively simple and can be solved for by Tay-

lor expansion of the Lagrange multipliers in time t. To evalu-

ate the time derivatives of the multipliers, one can use time

derivatives of the initial constraint conditions, which must

vanish to all orders. The result is a hierarchy of equations,

which, at order k, is linear in the unknown kth time deriva-

tives &"
!k"

but depends on the lower order time derivatives

&"
!0"

,&"
!1"

, . . . ,&"
!k−1"

. In exceptional circumstances, this hierar-

chy naturally truncates. For example, for a rigid diatomic

molecule with a single bond-length constraint, one finds that

the hierarchy truncates at order k=0, and the Lagrange mul-

tiplier is a constant.
15

However, this is not the typical case.

Alternatively, since the constraints !"!rN"=0 are to be

satisfied at all times t, and not just at time zero, their time

derivatives are zero at all times. From the first time deriva-

tive !̇"!rN"=0, one sees that the initial velocities vi= ṙi must

obey

)
i

vi ·
#!"

#ri

= 0, !5"

for each constraint condition ". The Lagrange multipliers

can be determined by the condition that the second deriva-

tives of all the constraints vanish, which, using Eq. !4",
yields

21

&" = Z"'
−1 !rN"T'!rN, ṙN" , !6"

where

T'!rN, ṙN" = )
i,j

ṙ j ·
#2!'!rN"

#r j#ri

· ṙi, !7"

Z"'!rN" = )
i

1

mi

#!"!rN"
#ri

·
#!'!rN"

#ri

. !8"

As Eq. !6" shows, in general, the Lagrange multipliers

are dependent on both the positions rN and the velocities ṙN

of the particles. To see that this makes the dynamics non-

Hamiltonian, the equations of motion can be cast into

Hamiltonian-type form using pi=miṙi, i.e.,

ṙi =
pi

mi

, ṗi = − &"

#!"

#ri

, !9"

where it is apparent that the forces in the system depend on

the momenta through &" in Eq. !6". There exists no Hamil-

tonian that generates these equations of motion.
22

Since the underlying dynamics of the system is non-

Hamiltonian, the statistical mechanics of the constrained sys-

tem is potentially more complex. In general, phase-space av-

erages have to be defined with respect to a metric that is

invariant to the standard measure of Hamiltonian systems,

but drNdpN is not conserved under the dynamics and the

standard form of the Liouville equation does not hold.
23,24

In

general, there is a phase-space compressibility factor ( asso-

ciated with the lack of conservation of the measure that is

given by the negative of the divergence of the flow in phase

space. It may be shown that
24,25

( = −
#

#ri

ṙi −
#

#pi

ṗi =
d

dt
ln*Z!rN"* ,

where *Z!rN"* is the determinant of the matrix Z"'!rN" de-

fined in Eq. !8". The compressibility factor is related to the

invariant phase-space metric d)= *Z!rN"*drNdpN.
25,26

Statis-

tical averages are therefore defined for the non- Hamiltonian

system as
27,28

+X!rN,pN", =
1

Q
- dpNdrN*Z!rN"*X!rN,pN"*!rN,pN"

+ .
"

,!!"!rN"",!!̇"!rN,pN"" , !10"

where *!rN ,pN" is the probability density for the uncon-

strained system and Q is the partition function for the con-

strained system, given by
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Q =- dpNdrN*Z!rN"**!rN,pN"

+ .
"

,!!"!rN"",!!̇"!rN,pN"" .

Although the invariant metric is nonuniform for many con-

strained systems, for the special case of entirely rigid sys-

tems the Z"'!rN" matrix is a function only of the point

masses and fixed distances. Hence, the term *Z!rN"* acts as a

multiplicative factor, which cancels in the averaging process.

Although the solution of the dynamics of constrained

systems via time-independent holonomic constraints is intel-

lectually appealing and useful for developing a formal statis-

tical mechanics for these systems, it is often difficult to ana-

lytically solve for the values of the Lagrange multipliers at

arbitrary times. One therefore often resorts to numerical so-

lutions of the multipliers in iterative form, using methods

such as SHAKE.
29

Regardless of the method by which the Lagrange multi-

pliers are obtained, in general the free motion of a semiflex-

ible molecule has to be integrated numerically in a step-by-

step fashion. Although such an approach is not really

consistent with the principles of DMD, it is important to note

that the only forces required in the integration of the free

motion of a molecule are the constraint forces, which depend

only on the coordinates of the molecule itself. Consequently,

the biggest bottleneck in standard molecular dynamics, the

calculation of inter- and intramolecular forces, is not present

here and the numerical computation of the free motion of

each molecule can be done independently. This makes the

integration of the equations of motion very different and

much faster than in standard molecular dynamics simula-

tions. As a result, most of the computational burden will be

associated with determining and performing collision events,

and the simulation can still rightfully be called event driven.

B. Free motion of rigid bodies

While the above formalism is also applicable to fully

constrained, rigid bodies, it is possible to circumvent the

constrained Lagrangian formalism by applying other ap-

proaches to calculate the evolution of the system analytically

in the absence of external forces. The basic simplification in

the dynamics of rigid bodies results from the fact that the

general motion of a rigid body can be decomposed into a

translation of the center of mass of the body plus a rotation

about the center of mass. The orientation of the body relative

to its center of mass is described by the relation between the

so-called body frame, in which a set of axes are held fixed

within the body as it moves, and the fixed external laboratory

frame. The two frames of reference can be connected by an

orthogonal transformation, such that the position of an atom

i in a rigid body can be written as

ri = R + A
†r̃i, !11"

where r̃i is the position of atom i in the body frame !which is

independent of time", R is the center of mass, and the matrix

A
† is the orthogonal !rotation" matrix that converts coordi-

nates in the body frame to the laboratory frame. The matrix

A
† is the transpose of A, which is called the attitude matrix

and which converts coordinates from the laboratory frame to

the body frame. The elements of the rows of the attitude

matrix A are simply the coordinates of the principal axes of

the body written in the laboratory frame. Note that Eq. !11"
implies that the relative vector r̄i satisfies

r̄i = ri − R = A
†r̃i. !12"

One sees that in order to determine the location of dif-

ferent parts of the body in the laboratory frame, the attitude

matrix A must be determined. Formally, any rotation matrix

U !such as the attitude matrix" is a so-called special orthogo-

nal matrix that can be specified by a rotation axis n̂

= !n1 ,n2 ,n3" and an angle - over which to rotate. Here n̂ is a

unit vector, so that any nonunit vector -n̂ can be used to

specify a rotation, where its norm is equal to the angle - and

its direction is equal to the axis n̂. According to Rodrigues

formula, the matrix corresponding to this rotation is
20

U!-n̂" = I + W!n̂"sin - + W!n̂"W!n̂"!1 − cos -" , !13"

where I is the identity matrix and W is the skew-symmetric

matrix

W!n̂" = /
0 − n3 n2

n3 0 − n1

− n2 n1 0
0 . !14"

From these definitions, it can be shown that the attitude ma-

trix A satisfies the differential equation

Ȧ = − AW!!" , !15"

where ! is the angular velocity in the laboratory frame.

The equations of motion of the angular velocity are most

simply written down by transforming them to the principal

axis, or body, frame, i.e., !̃=A!. In this frame, the angular

velocities obey the well-known Euler equations !here in the

absence of forces",

I1.̇̃1 − .̃2.̃3!I2 − I3" = 0,

I2.̇̃2 − .̃1.̃3!I3 − I1" = 0, !16"

I3.̇̃3 − .̃1.̃2!I1 − I2" = 0,

where I1, I2, and I3 are the principal components of the mo-

ment of inertia tensor. In the principal axis frame, the repre-

sentation of the components of the angular momentum L̃

= !L̃1 , L̃2 , L̃3" is particularly simple,

L̃ = Ĩ!̃ = /I1.̃1

I2.̃2

I3.̃3

0 . !17"

Using some of the properties of rotation matrices, Eq.

!15" can be rewritten to relate the time evolution of A to the

angular velocities in the body frame,
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Ȧ = − W!!̃"A . !18"

Thus, once the angular velocity !̃ is known, it can be sub-

stituted into Eq. !18" to solve for the matrix A. The general

solution of Eq. !18" is of the form

A = PA!0" . !19"

Note that the matrices A and P depend on t, while A!0" is

the attitude matrix at time zero. Thus, P is a rotation matrix

which “propagates” the orientation A!0" to the orientation at

time t. P satisfies the same Eq. !18" as A, but with initial

condition P!0"=I. By integrating this equation, one can ob-

tain an expression for P. At first glance, it may seem that P

can only be written as a formal expression containing a time-

ordered exponential. However, in the absence of forces, the

conservation of angular momentum and energy and the or-

thogonality of the matrix P can be used to derive the follow-

ing explicit expression
30 !implicitly also found in Ref. 14":

P = T1T2, !20"

where T1 and T2 are two rotation matrices. The matrix T1

rotates L̃!0" to L̃ and can be written as

T1 = / c1c2 − s1s2c3 c1s2 + s1c2c3 s1s3

− s1c2 − c1s2c3 − s1s2 + c1c2c3 c1s3

s2s3 − c2s3 c3

0 , !21"

where

s1 =
L̃1

L̃!

, c1 =
L̃2

L̃!

, !22"

s2 = −
L̃1!0"

L̃!!0"
, c2 =

L̃2!0"

L̃!!0"
, !23"

s3 =
L̃!L̃3!0" − L̃3L̃!!0"

L2
, c3 =

L̃!L̃!!0" + L̃3L̃3!0"
L2

,

!24"

and L̃!=1L̃1
2+ L̃2

2 while L= %L̃%.
Using the notation in Eq. !13", the matrix T2 can be

expressed as

T2 = U!− /L−1L̃!0"" , !25"

where the angle / is given by

/ = -
0

t

dt!0!t!" , !26"

with

0 = L
I1.̃1

2 + I2.̃2
2

L̃
!

2
. !27"

The angle / can be interpreted as an angle over which the

body rotates. If the body rotates one way, the laboratory

frame as seen from the body frame rotates in the opposite

way, which explains the minus sign in Eq. !25". For the

derivation of Eqs. !20"–!27", we refer to Ref. 30. Similar

equations, but in a special reference frame, can be found in

Ref. 14.

In the following, the solution of Eqs. !16" and !18" for

bodies of differing degrees of symmetry will be analyzed.

1. Spherical rotor

For the case of a spherical rotor in which all three mo-

ments of inertia are equal, i.e., I1= I2= I3, the form of the

Euler equations !16" is particularly simple: I1.̇̃ j =0. There-

fore, all components of the angular velocity in the body

frame are conserved, as are those of the angular momentum.

As a result, T1 in Eq. !21" is equal to the identity matrix. A

second consequence is that 0 in Eq. !27" is constant, so that

/=0t, where 0 may be rewritten, using I1= I2= I3, as 0

=L / I1= %!%. Therefore Eqs. !20" and !25" give

P = U!− !t" , !28"

corresponding to a rotation by an angle of −0t around the

axis ! /0.

2. Symmetric top

For the case of a symmetric top for which I1= I2, one can

solve the Euler equations !16" in terms of simple sines and

cosines to obtain

!̃ = / .̃1!0"cos .pt + .̃2!0"sin .pt

− .̃1!0"sin .pt + .̃2!0"cos .pt

.̃3!0"
0 , !29"

where .p= !1− !I3 / I1"".̃3!0" is the precession frequency. Us-

ing Eq. !29" and the fact that L̃! and L̃3 are conserved in this

case, one can easily show that T1 is given by

T1 = U!− .ptẑ" , !30"

and 0 is given by

0 =
L#I1.̃1

2!0" + I1.̃2
2!0"$

I1
2.̃1

2!0" + I1
2.̃2

2!0"
=

L

I1

. !31"

As this 0 is constant, the rotation angle is simply /
= !L / I1"t, and hence

T2 = U2−
L̃!0"t

I1

3 . !32"

For the symmetric top, the propagation matrix P is therefore

P = U!− .ptẑ"U2−
L̃!0"t

I1

3 . !33"

3. Asymmetric body

If all the principal moments of inertia are distinct, the

time dependence of the angular velocity !̃ involves Jacobi

elliptic functions.
10,30

While this may seem complicated, ef-

ficient standard numerical routines exist to evaluate these

functions.
31–35

More challenging is the evaluation of the ma-

trix P. While its exact solution has been known for more

than 170 years,
9,10

it is formulated—even in more recent

texts
11,12

—in terms of undetermined constants and using
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complex algebra, which hinders a straightforward implemen-

tation of the free motion in a numerical simulation. It is

surprisingly difficult to find an explicit formula in the litera-

ture for the matrix P as a function of the initial conditions,

which is the form needed in DMD simulations. For this rea-

son, the explicit general solution for P, derived in detail in

Ref. 30, will briefly be presented here in terms of general

initial conditions.

Following Jacobi,
10

it is useful to adopt the convention

that I2 is the moment of inertia which is intermediate in

magnitude !i.e., either I11 I21 I3 or I1% I2% I3", and one

chooses the overall ordering of magnitudes such that

I1 % I2 % I3 if ER %
L2

2I2

,

!34"

I1 1 I2 1 I3 if ER 1
L2

2I2

,

where ER is the rotational kinetic energy ER=
1

2
!I1.̃1

2+ .̃2
2

+ I3.̃3
2" and L is the norm of the angular momentum L

= !I1
2.̃1

2+ I2
2.̃2

2+ I3
2.̃3

2"1/2. Without this convention some quan-

tities defined below would be complex valued, which is nu-

merically inconvenient and inefficient. Note that in a simu-

lation, molecules will often be assigned a specific set of

physical inertial moments with fixed order, i.e., not depend-

ing on the particular values of ER and L. Nevertheless, a

simple way to adopt the convention in Eq. !34" is to intro-

duce internal variables !̃int=U
*
!̃, Ĩint=U

*
ĨU

*, and Aint

=U
*
ÃU

*, which differ when necessary from the physical

ones by a rotation given by the rotation matrix

U
* = /

0 0 1

0 − 1 0

1 0 0
0 . !35"

This matrix interchanges the x and z directions and reverses

the y direction.

The Euler equations !16" can be solved to obtain
10,11,13

!̃ = /
.1m cn!.pt + 2%m"

.2m sn!.pt + 2%m"

.3m dn!.pt + 2%m"
0 , !36"

where 2 is an integration constant. Here sn, cn, and dn are

Jacobi elliptic functions,
31,32,36

while the .im are the extreme

!maximum or minimum" values of the .i and are given by

.1m = sgn!.̃1!0""1L2 − 2I3ER

I1!I1 − I3"
,

.2m = − sgn!.̃1!0""1L2 − 2I3ER

I2!I2 − I3"
, !37"

.3m = sgn!.̃3!0""1L2 − 2I1ER

I3!I3 − I1"
,

where sgn!x" is the sign of x. In Eq. !36", the precession

frequency .p is given by

.p = sgn!I2 − I3"sgn!.̃3!0""1!L2 − 2I1ER"!I3 − I2"
I1I2I3

.

!38"

The elliptic functions are periodic functions of their first ar-

gument and look very similar to the sine, cosine, and con-

stant functions. They depend on the elliptic parameter m !or

elliptic modulus 1m", which determines how closely the el-

liptic functions resemble their trigonometric counterparts,

and which is given by

m =
!I1 − I2"!L2 − 2I3ER"
!I3 − I2"!L2 − 2I1ER"

. !39"

The integration constant 2 in Eq. !36" is given by

2 = F!.̃20/.̃2m%m" , !40"

where F is the incomplete elliptic integral of the first

kind
31,32

F!y%m" = -
0

y
dx

1!1 − x2"!1 − mx2"
. !41"

In fact, sn!x %m" is simply the inverse of this function. As a

result of the ordering convention in Eq. !34", the parameter

m in Eq. !39" is guaranteed to be less than 1, which is re-

quired in order that F!y %m" in Eq. !41" is not complex val-

ued.

Three more numbers can be derived from the elliptic

parameter m which play an important role in determining the

properties of elliptic functions. These are the quarter period

K=F!1 %m", the complementary quarter period K!=F!1 %1
−m", and the nome q=exp!−3K! /K", which is the parameter

in various series expansions.

With the solutions of the Euler equations in hand, we

now turn to the solution of Eq. !18" as given by Eqs.

!19"–!27". The expression for 0 in Eq. !27" is not a constant

in this case but is a periodic function involving elliptic func-

tions. Despite this difficulty, the integral can still be per-

formed using some properties of elliptic functions, with the

result
30

/ = A1 + A2t − 4 . !42"

The constants A1, A2 and the periodic function 4 can be

expressed using the theta function H!u %m" !Refs. 10, 31, and

32" as

4 = arg H!.pt + 2 − i5%m" , !43"

A1 = 4!0" = arg H!2 − i5%m" , !44"

A2 =
L

I1

+ .p

d log H!i5%m"
d5

, !45"

where we have used the definition

5 = sgn!.̃30"K! − F24 I3.3m

L
41 − m3 . !46"

Equations !43"–!45" involve complex values which are

not convenient for numerical evaluation. Using the known
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series expansions of the theta function H and its logarithmic

derivative
31,32

in terms of the nome q, these equations may

be rewritten in a purely real form. In fact, one readily obtains

the sine and cosine of /, which are all that is needed in Eqs.

!13" and !25",

cos / =
hr cos!A1 + A2t" + hi sin!A1 + A2t"

1hr
2 + hi

2
,

!47"

sin / =
hr sin!A1 + A2t" − hi cos!A1 + A2t"

1hr
2 + hi

2
,

where hr and hi are the real and imaginary parts of the theta

function H and are given by

hr = 2q1/4)
n=0

6

!− 1"nqn!n+1" cosh
!2n + 1"35

2K

+ sin
!2n + 1"3!.pt + 2"

2K
, !48"

hi = − 2q1/4)
n=0

6

!− 1"nqn!n+1" sinh
!2n + 1"35

2K

+ cos
!2n + 1"3!.pt + 2"

2K
, !49"

while the constant A1 is

A1 = arctan#hi!0"/hr!0"$ + n3 , !50"

where n=0 if hr!0"%0, n=1 if hr!0"10 and hi!0"%0, and

n=−1 if hr!0"10 and hi!0"10. Finally, the constant A2 is

given by
31,32

A2 =
L

I1

+
3.p

2K
5 7 + 1

7 − 1
− 2)

n=1

6
q2n!7n − 7−n"

1 − q2n 6 , !51"

where 7=exp!35 /K". The series expansion in q in Eq. !51"
converges for 7q211. Because −K!151K! #cf. Eq. !46"$,
one has 7q2$q11, and the series always converges. Since q

is typically small, the convergence is rarely very slow #e.g.,

for convergence up to relative order ,, one needs

O!log , / log q" terms$. Note that since the constants A1 and

A2 depend only on the initial angular velocities, they only

need to be calculated once at the beginning of the motion of

a free rigid body. On the other hand, the series expansions in

Eqs. !48" and !49", which have to be evaluated any time the

positions are desired, have extremely fast convergence due to

the qn!n+1" appearing in these expressions #for example, un-

less m80.95, the convergence of the series up to O!10−15"
occurs, taking only three terms$.

There are efficient routines to calculate the functions cn,

sn, dn, and F, see, e.g., Refs. 31–35, and the series in Eqs.

!48", !49", and !51" converge; the former two quite rapidly in

fact. Therefore, despite an apparent preference in the litera-

ture for conventional numerical integration of the equations

of motion via many successive small time steps even for

torque-free cases, the analytical solution can be used to cal-

culate the same quantities in a computationally more effi-

cient manner requiring only the evaluation of special func-

tions.

IV. INTERACTION EVENTS

As mentioned above, in systems with discontinuous po-

tentials, the particles evolve freely until two sites are an in-

teraction distance apart. In this section the computation for

this interaction distance will be shown, and in the next sec-

tion, the consequences of the interactions will be determined.

The complicated free motion of constrained systems im-

plies that evaluating the distance at arbitrary times between

any interaction sites is nontrivial. In contrast to simulations

of hard-sphere systems in which it is possible to analytically

calculate the time at which a given pair of spheres interact,

the interaction times for constrained molecular systems must

be computed numerically even if an analytical solution of the

free motion is available, as it is for rigid bodies. Neverthe-

less, a general method of determining the interaction times

that does not depend on the details of the dynamics and is

equally valid for semiflexible and rigid systems can be con-

structed.

A. Calculation of interaction event times

The identification of interaction times corresponds to

finding the time at which the distance between two sites !on

the same or on different molecules" corresponds to a discon-

tinuity in the interaction potential. Assuming that the inter-

actions between sites i and j depend only on the scalar dis-

tance rij between the sites, one can define a collision

indicator function f ij,

f ij =
1

2 !rij
2 − dij

2 " , !52"

where rij is the radial distance between sites i and j, and dij

is the distance at which a discontinuity appears in the poten-

tial for the given pair of sites. With this definition, an inter-

action time tc is a zero of the collision indicator function, so

that f ij!tc"=0, and hence the problem of finding the interac-

tion times corresponds to finding the zeros of this typically

oscillatory function.

For intermolecular interactions, the search for the earli-

est interaction or “collision” event time can be facilitated

using screening strategies to decide when bodies may

overlap.
37,38

Usually, these involve placing the bodies in

bounding boxes and using an efficient method to determine

when bounding boxes intersect. The simplest way to do this

is to place each molecule in the smallest sphere around its

center of mass containing all components of the molecule.
15

Note that for semiflexible molecules, this sphere should be

large enough to accommodate the largest possible configura-

tion of the molecule. The position of the sphere is deter-

mined by the motion of the center of mass, while any change

in orientation !and shape in the semiflexible case" of the

molecule occurs within the sphere. Collisions between mol-

ecules can therefore only occur when their encompassing

spheres overlap, and the time at which this occurs can be

calculated analytically for any pair of molecules. This time

serves as a useful point to begin a more detailed search for
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collision events !see below". Similarly, one can also calculate

the time at which the spheres no longer overlap, and use

these event times to bracket a possible root of the collision

indicator function. It is crucial to make the time bracketing

as tight as possible in any implementation of DMD with

numerical root searches, because the length of the time

bracketing interval determines the required number of evalu-

ations of the positions and velocities of the atoms, and there-

fore, plays a significant role in the efficiency of the overall

procedure.

For intermolecular interactions, the intersection of

bounding spheres around molecules establishes the largest

possible time bracket for which to perform a root search. For

intramolecular interactions, such a time bracket is generally

not available, but the technique of virtual collisions, as will

be explained in the next section, can be used to reduce the

root-search interval to a manageable size. To narrow down

the root search, this total interval found by bracketing may

be subdivided into a set of grid points separated by smaller

time intervals of length 9t. The simplest, reliable, and rea-

sonably efficient means of detecting a root is thus to perform

a grid search that looks for changes in the sign of f ij on this

set of grid points in time, i.e., one looks at f ij!t+n9t" and

f ij!t+ !n+1"9t" over a set of integers n. When a time interval

in between two grid points is found in which a sign change

of f ij occurs, the Newton-Raphson algorithm
33

can be called

to numerically determine the root with arbitrary accuracy.

Since the Newton-Raphson method requires the calculation

of first time derivatives, one must also calculate, for any time

t, the derivative df ij /dt=rij ·vij, where the notations rij =r j

−ri and vij =v j −vi have been used. Such time derivatives are

generally readily evaluated.

Unfortunately, while the Newton-Raphson method is a

very efficient algorithm for finding roots, it can be somewhat

unstable when one is searching for the roots of an oscillatory

function. For translating and rotating molecules, the collision

indicator function is often oscillatory due to the periodic or

near-periodic motion of the relative orientation of two col-

liding bodies. It is particularly easy to miss so-called grazing

collisions when the grid search interval 9t is too large, in

which case the indicator function is positive in two consecu-

tive points of the grid search, yet nonetheless “dips” below

zero within the grid interval. It is important that no roots are

missed, for a missed root can lead to a different, and possi-

bly, infinite energy. To reduce the frequency of missing graz-

ing collisions to zero, a vanishingly small grid interval 9t

would be required. Of course, such a scheme is not practical,

and one must balance the likelihood of missing events with

practical considerations since several collision indicator

functions need to be evaluated at each point of the grid.

Clearly, the efficiency of the root-search algorithm signifi-

cantly depends on the magnitude of the grid interval.

To save computation time, a coarser grid can be utilized

if a means of handling grazing collisions is implemented.

Since the collision indicator function has a local extremum

!maximum or minimum, depending on whether %ri−r j%2 is

initially smaller or larger than d2" at some time near the time

of a grazing collision, a reasonable strategy to find these kind

of collision events is to determine the extremum of the indi-

cator function in cases in which the indicator function f ij

itself does not change sign on the interval but its derivative

df ij /dt does. Furthermore, since the indicator function at the

grid points near a grazing collision is typically small, it is

fruitful to search only for extrema when the indicator func-

tion at one of the grid points lies below some threshold

value. To find the local extrema of the indicator function, any

simple routine of locating the extrema of a nonlinear func-

tion can be utilized. For example, Brent’s minimization

method,
33,39

which is based on a parabolic interpolation of

the function, is a good choice for sufficiently smooth one-

dimensional functions. Once the extremum is found, it is a

simple matter to decide whether or not a real collision exists

by checking the sign of f ij.

We remark that the threshold value in this procedure is

found by trial and error; a trial simulation with a very small

threshold value is run, which is sure to miss a collision at

some point due to a grazing collision. The collision indicator

function around the time of this grazing collision is inspected

and the threshold value is modified such that this collision

will not be missed. New trial simulations are run, and the

threshold is adjusted until the frequency of missed grazing

collisions is acceptably small.

Once the root has been bracketed !either through a sign

change of f ij during the grid search or after searching for an

extremum", one can simply use the Newton-Raphson algo-

rithm to find the root to desired accuracy, typically within

only a few iterations. The time value returned by the

Newton-Raphson routine needs to be in the bracketed inter-

val, and df ij /dt10 if f ij was initially positive and df ij /dt

%0 if it was initially negative. If those criteria are not satis-

fied, the Newton-Raphson algorithm has clearly failed and a

less efficient but more reliable method is needed to track

down the root. For example, the Van Wijngaarden–Dekker–

Brent method,
33,39

which combines bisection and quadratic

interpolation, is guaranteed to converge if the function is

known to have a root in the interval under analysis.

To clarify how this root-search algorithm finds the earli-

est interaction time for a pair of sites i and j, consider the

indicator function f ij shown in Fig. 1. The smallest interac-

tion time tc, determined by f ij!tc"=0, is found as follows: !1"
The intersection of bounding spheres around the molecules

containing i and j gives a quadratic lower bound for f ij. The

roots of the quadratic are at times A and F, so that the total

FIG. 1. Example of the root search. The thick line is f ij, the dashed line is a

lower bound, and the thin line is the threshold.
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search interval is #A, F$. !2" The total interval starting at A is

divided into smaller intervals of length 9t. The next grid

point in the total interval is at B=A+9t, and the successive

grid points are at C, D, and E. !3" f ij!A" and f ij!B" are

computed. Both are positive and larger than the threshold

value, so one concludes that no event takes place between A

and B. !4" f ij!C" is computed. Although its value is also

positive, it lies below the threshold, and the values of the

derivatives at B and C are opposite in sign, so a minimiza-

tion routine is called that returns the value of the minimum

and the time b at which the minimum occurs. In this case,

f ij!b"%0, so no root exists between B and C. !5" f ij!D" is

computed and is found to be positive. f ij!C" is below the

threshold value, and df ij /dt at C and D have opposite signs;

however, the derivative at C is positive so there is no mini-

mum and no root between C and D. !6" f ij!E" is computed

and is found to be negative: Therefore tc must lie between D

and E, and is found by the Newton-Raphson method, or, if

this fails, by the Van Wijngaarden–Dekker–Brent method.

B. Scheduling events

It was shown above how to determine the time tij at

which two atoms !or sites" i and j interact under the assump-

tion that there is no other earlier interaction. In a DMD simu-

lation, once the possible collision events at times tij have

been computed for all possible collision pairs i and j, the

earliest event t
i*j*
*

=minij tij is selected. After the collision

event between sites i* and j* has been executed !according to

the rules that will be derived in the next section", the next

earliest collision should be performed. However, because the

velocities of atoms of the molecules involved in the collision

have changed, the previously computed collision times in-

volving these molecules are no longer valid. The next event

in the sequence can be determined and performed only after

these collision times have been recomputed.

This process describes the basic strategy of DMD,

which, without further improvements, would be needlessly

inefficient. For if M is the number of possible collision

events, finding the earliest time would require O!M" checks,

and M =O!N2", while the number of invalidated collisions

that have to be recomputed after each collision would be

O!N". Since the number of collisions in the system per unit

of physical time also grows linearly with N, the cost of a

simulation for a given physical time would be O!N2" for the

computation of collision times and O!N3" for finding the first

collision event.
40

Fortunately, there are ways to significantly

reduce this computational cost.
1,5,41–45

The first technique,

also used in molecular dynamics simulations of systems in-

teracting with continuous potentials, reduces the number of

possible collision times that have to be computed by employ-

ing a cell division of the system.
1

Note that while the times

of certain interaction events !e.g., involving only the mol-

ecule’s center of mass" can be expressed in analytical form

and thus computed very efficiently, the atom-atom interac-

tions have, in general, an orientational dependence and the

possible collision time has to be found by means of a nu-

merical root search as explained in the previous section. As a

consequence, the most time consuming task in a DMD simu-

lation is the numerical root search for the collision times.

One can, however, minimize the required number of colli-

sion time computations by dividing the system into subcells

and sorting all molecules into these cells according to the

positions of their centers of mass. Each cell has a diameter of

at least the largest “interaction diameter” of a molecule !in its

largest configuration", as measured from its center of mass.

As a result, molecules can only collide if they are in the same

cell or in an adjacent cell, so the number of collision events

to determine, and to recompute after a collision, is much

smaller. In this technique, the sorting of molecules into cells

is only done initially, while the cell structure is dynamically

updated by introducing a cell-crossing event for each mol-

ecule that is also stored.
5,42

Since the center of mass of a

molecule performs linear motion between collision events,

one can express its cell-crossing time analytically and there-

fore the numerical computation of that time is very fast.

The second technique reduces the cost of finding the

earliest event time. It consists of storing possible collision

and cell-crossing events in a time-ordered structure called a

binary tree. For details we refer to Refs. 5 and 42 !alternative

event scheduling algorithms exist,
43,44

but it is not clear

which technique is generally the most efficient
45".

Finally, a third standard technique, which is beneficial if

an exact solution for the free motion of a molecule is avail-

able, is to update the molecules’ positions and velocities only

at collisions !and possibly upon their crossing the periodic

boundaries", while storing the time of their last collision as a

property of the molecule called its local clock.
41

Whenever

needed, the positions and velocities at later times can be

determined from the solution of force-free and torque-free

motion of Sec. III.

The use of cell divisions, a binary event tree to manage

the events, and local clocks is a standard practice in DMD

simulations and largely improves the simulation’s

efficiency.
5

To see this, note that one picks the earliest event

from the tree in each step of the simulation, which scales as

O!log N" for randomly balanced trees.
5,42

If it is a collision

event, it is then performed and subsequently O!1" collisions

and cell crossings are recomputed and added to the event tree

#:O!log N"$. If it is a cell-crossing event, the corresponding

molecule is put in its new cell, and new possible collision

and crossing events are computed #O!1"$ and added to the

tree #O!log N"$. Then the program progresses to the next

event. Since O!N" real events take place per unit of physical

time, one sees that using these techniques, the computational

cost per unit of physical time due to the computation of

possible collisions and cell-crossing times scales as O!N"
instead of O!N2", while the cost due to the event scheduling

is O!N log N" per unit of physical time instead of O!N3"—a

huge reduction.

Contrary to what their scaling may suggest, one often

finds that the cost of the computation of collision times

greatly dominates the scheduling cost for finite N. This is due

to the fact that the computations of many of the collision

times require numerical root searches. Thus, to gain further

computational improvements, one has to improve upon the

efficiency of the numerical search for collision-event times.

A nonstandard time-saving technique that we have developed
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for this purpose is to use virtual collision events. In this case,

the grid search !see Sec. IV A" for a possible collision time

of atoms i and j is carried out only over a fixed small number

of grid points, thus limiting the scope of the root search to a

small search interval. If no collisions are detected in this

search interval, a virtual collision event is scheduled in the

binary event tree, much as if it were a possible future colli-

sion at the time of the last grid point that was investigated. If

the point at which the grid search is curtailed is rather far in

the future, it is likely that this virtual event will not be ex-

ecuted because the atoms i and j probably will have collided

with other atoms beforehand. Thus, computational work has

been saved by stopping the grid search after a few grid

points. Every now and then, however, atoms i and j will not

have collided with other atoms at the time at which the grid

search was stopped. In this case, the virtual collision event in

the tree is executed, which entails continuing the root search

from the point at which the search was previously truncated.

The continued search again may not find a root in a finite

number of grid points, and hence another virtual collision

would be scheduled, or it may now find a collision. In either

case, the new event is scheduled in the tree. This virtual

collision technique avoids the unnecessary computation of a

collision time that is so far in the future that it will not be

executed in all likelihood anyway, while at the same time

ensuring that if, despite the odds, that collision is to happen,

it is indeed found and correctly executed. Furthermore, since

the virtual collision technique restricts the root-search inter-

val, it solves the problem of finding an initial bracketing for

intramolecular interactions. The trade-off of this technique is

that the event tree is substantially larger, slowing down the

event management. Due to the high cost of numerical root

searches, however, the simulations presented in the accom-

panying paper showed that using virtual collision events

yields an increase in efficiency between 25% and 110%, de-

pending mainly on the system size.

V. COLLISION RULES

At each moment of interaction, the impulsive forces lead

to discontinuous jumps in the momenta !and angular mo-

menta" of the interacting bodies. The effect of the impulses

must be consistent with physical principles, such as the con-

servation of energy. However, the presence of constraints

strongly influences how impulses alter the momenta of the

system, since all constraints must be obeyed at all times,

including at the moment of interaction. As a result, for semi-

flexible systems, interactions between a pair of sites on mol-

ecules typically lead to discontinuous changes in the mo-

menta of all sites in the interacting molecules.

On the other hand, the effect of the impulsive interac-

tions in fully constrained rigid systems can be analyzed more

simply by focusing on the change in the center-of-mass mo-

tion and angular momenta rather than the site momenta. In

the following subsections, the effect of the impulses at inter-

action times is analyzed for these two cases.

A. Semiflexible systems

The general collision process in systems with discon-

tinuous potentials can be seen as a limit of the collision

process for continuous systems in which the interaction po-

tential becomes infinitely steep. A useful starting point for

deriving the collision rules is therefore to consider the effect

of a force applied to the overall change in the momentum of

any atom k:

pk! ( pk!tc + 9t" = pk + -
tc−9t

tc+9t

ṗk!t"dt

= pk + -
tc−9t

tc+9t

Fk!rN!t""dt , !53"

where Fk is the total force acting on atom k and pk(pk!tc

−9t". Furthermore, here and below, the pre- and postcolli-

sion values of a quantity a are denoted by a and a!, respec-

tively.

For discontinuous systems, the forces between sites are

impulsive and occur only at an instantaneous collision time

tc. When atoms i and j experience either an inter- or intramo-

lecular collision, the interaction potential # depends only on

the scalar distance rij between those atoms, so that the force

on an arbitrary atom k is given by !without summation over

i and j"

−
##!rN"

#rk

= −
##!rN"

#rij

#rij

#rij

·
#rij

#rk

= −
##!rN"

#rij

1

rij

rij!, jk − ,ik" .

Note that this is nonzero only for the atoms involved in the

collision, as expected. Given that the force is impulsive, it

may be written as

−
##!rN"

#rk

= S,!t − tc"r̂ij!, jk − ,ik" , !54"

where the scalar S is the magnitude of the impulse !to be

determined" on atom a in the collision.

In general, the constraint forces on the right-hand side of

Eq. !4" must also have an impulsive component whenever

forces are instantaneous in order to maintain the rigid-body

constraints at all times. We account for this by writing the

Lagrange multipliers as

&" = ;" + )",!t − tc" .

Because &" enters into the equations of motion for all atoms

k involved in the constraint !", there is an effect of this

impulsive constraint force on all those atoms. Thus, one can

write for the force on an atom k when atoms i and j collide:

Fk!rN" = − ;"

#!"!rN"
#rk

+ ,!t − tc"

+5Sr̂ij!, jk − ,ik" − )"

#!"!rN"
#rk

6 . !55"

Substituting Eq. !55" into Eq. !53", one finds that the term

proportional to ;" vanishes in the limit that the time interval
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9t approaches zero, so that the postcollision momenta pk! are

related to the precollision momenta pk by

pk! = pk − )"

#!"!rN"
#rk

+ Sr̂ij!, jk − ,ik" . !56"

Note that at the instant of collision t= tc, the positions of all

atoms rN remain the same !only their momenta change" so

that there is no ambiguity in the right-hand side of Eq. !56"
as to whether to take the rN before or after the collision. It is

straightforward to show that due to the symmetry of the in-

teraction potential, the total linear momentum and angular

momentum of the system are conserved by the collision rule

#Eq. !56"$ for arbitrary values of the unknown scalar func-

tions S and )". In addition to these constants of motion, the

collision rule must also conserve the total energy and pre-

serve the constraint conditions, !"!rN"=0 and !̇"!rN"=0, be-

fore and after the collision. The first constraint condition is

trivially satisfied at the collision time, since the positions are

not altered at the moment of contact. The second constraint

condition allows the scalars )" to be related to the value of S

using Eq. !5" before and after the collision, since we must

have

!̇" = )
k

pk

mk

·
#!"

#rk

= 0,

!57"

!̇"! = )
k

pk!

mk

·
#!"

#rk

= 0.

Inserting Eq. !56" into Eq. !57", one gets

0 = )
k

1

mk

2Sr̂ij!, jk − ,ik" − )'

#!'

#rk

3 ·
#!"

#rk

. !58"

Solving this linear equation for )" gives

)" = Z"'
−1

F',

!59"

F' = Sr̂ij · 2 1

m j

#!'

#r j

−
1

mi

#!'

#ri

3 ,

where the Z"' matrix was defined in Eq. !8". Note that for

intermolecular interactions, atoms i and j are on different

bodies, so that a given constraint !' involves either one or

the other atom !or neither", and at least one of the two terms

on the right-hand side of Eq. !59" is zero. For intramolecular

interactions, both terms can be present. Equation !56" can

now be written as

pk! = pk + S9pk,

!60"

9pk = r̂ij!, jk − ,ik" − )"
* #!"

#rk

,

where )"
* =)" /S is a function of the phase-space coordinate

as determined by Eq. !59" and is independent of S.

Finally, the scalar S can be determined by employing

energy conservation,

)
k

rk! · pk!

2mk

+ 9# = )
k

pk · pk

2mk

, !61"

where 9#=#!−# denotes the discontinuous change in the

potential energy at the collision time. Inserting the expres-

sion in Eq. !60" into Eq. !61" and using Eq. !5", one gets a

quadratic equation for the scalar S,

aS2 + bS + 9# = 0,

a = )
k

9pk · 9pk

2mk

, !62"

b = )
k

pk · 9pk

mk

= r̂ij · vij .

For finite values of 9#, the value of S is therefore

S =
− b ± 1b2 − 4a9#

2a
, !63"

where the physical solution corresponds to the positive

!negative" root if b%0 !b10", provided b2%4a9#. If this

latter condition is not met, there is not enough kinetic energy

to overcome the discontinuous barrier, and the system expe-

riences a hard-core scattering, with 9#=0, so that Eq. !63"
gives S=−b /a. Once the value of S has been computed, the

discrete changes in momenta or velocities are easily com-

puted using Eq. !60".

B. Rigid-body approach

The solution method outlined above can be applied to

semiflexible as well as rigid molecular systems, but is not

very suitable for rigid, continuous bodies composed of an

infinite number of point particles. For perfectly rigid bodies,

a more convenient approach is therefore to analyze the effect

of impulsive collisions on the center of mass and angular

coordinates of the system, which are the minimum number

of degrees of freedom required to specify the dynamics of

rigid systems. The momentum of the center of mass Pa and

the angular momentum La of rigid molecule a are affected by

the impulsive collision via

Pa! = Pa + 9Pa,

!64"
La! = Ra + Pa! + Ia!a! = La + Ra + 9Pa + Ia9!a

= La + 9La,

where Ia and !a are the moment of inertia tensor and the

angular velocity of body a in the laboratory frame, respec-

tively. Note that they are related to their respective quantities

in the principal axis frame !body frame" via the matrix Aa

!now associated with the body a":

Ia = Aa
†
ĨaAa,

!65"
!a = Aa

†
!̃a.

Note that intramolecular interactions cannot have any

effect on fully rigid bodies, hence, the momentum and angu-
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lar momentum of a body a can only change due to an inter-

molecular interaction with another body b. To derive specific

forms for the impulsive changes 9Pa, 9!a, 9Pb, and 9!b,

one may calculate the impulsive force and torque acting on

the center of mass and angular momentum, leading to 9Pa

=−9Pb=−Sr̂ and 9La=−9Lb=ra+9Pa, or

9!a = − SIa
−1!!ra − R" + r̂" , !66"

where ra and rb are the points at which the forces are applied

on bodies a and b, respectively, while r̂= !rb−ra" /rab with

rab= %rb−ra%.
To determine the scalar S, one again uses the conserva-

tion of total energy !E!=E" to obtain a quadratic equation for

S of the form of Eq. !63", with

a =
1

2Ma

+
1

2Mb

+
9E.

a + 9E.
b

2
,

b = v · r̂ ,

where v is the relative velocity of the interaction sites, i.e.,

v = Vb − Va + !b + !rb − Rb" − !a + !ra − Ra" ,

and

9E.
a = na · Ia

−1
na,

9E.
b = nb · Ib

−1
nb,

with

na = !ra − Ra" + r̂ ,

nb = !rb − Rb" + r̂ .

VI. CONCLUSIONS

In this paper we have shown how to carry out discon-

tinuous molecular dynamics simulations for semiflexible and

rigid molecules with arbitrary discontinuous intermolecular

and intramolecular interaction potentials in the absence of

external potentials. For semiflexible bodies, the dynamics

and collision rules have been derived from the principles of

constrained mechanics. The implementation of an efficient

DMD method for semiflexible systems is hindered by the

fact that in almost all cases the equations of motion must be

propagated numerically in an event searching algorithm so

that the constraints are enforced at all times. Nonetheless,

such a scheme can be realized using the SHAKE !Ref. 29" or

RATTLE !Ref. 46" algorithms in combination with the root-

searching methods outlined here.

The dynamics of a system of completely rigid molecules

interacting through discontinuous potentials is more straight-

forward. For such a system, the Euler equations for rigid-

body dynamics can be used to calculate the free evolution of

a general rigid object. This analytical solution enables the

design of efficient numerical algorithms for the search for

collision events. In addition, the collision rules for calculat-

ing the discontinuous changes in the components of the cen-

ter of mass velocity and angular momenta have been ob-

tained for arbitrary bodies with single-site interactions based

on conservation principles.

From an operational standpoint, the difference between

the method of DMD and molecular dynamics using continu-

ous potentials in rigid systems lies in the fact that the DMD

approach does not require the calculation of forces and se-

quential updating of phase-space coordinates at discrete !and

short" time intervals since the response of the system to an

impulse can be computed analytically. Instead, the computa-

tional effort focuses on finding the precise time at which

such impulses exert their influence. The basic building block

outlined here for the numerical computation of collision

times is a grid search, for which the positions of colliding

atoms on a given pair of molecules need to be computed at

equally spaced points in time. As outlined in Sec. IV, this can

be done efficiently starting with a completely explicit ana-

lytical form of the motion of a torque-free rigid body. An

efficient implementation of the DMD technique to find the

collision-event times should make use of !a" a large grid step

combined with a threshold scenario to catch pathological

cases, !b" sophisticated but standard techniques such as bi-

nary event trees, cell divisions, and local clocks, and !c" a

new technique of finding collision times numerically that

involves truncating the grid search and scheduling virtual

collision events.

On a fundamental level, it is natural to wonder whether

the “stepped” form of a discontinuous potential could possi-

bly model any realistic interaction. Such concerns are essen-

tially academic, since it is always possible to approximate a

given interaction potential with as many !small" steps as one

would like in order to approximate a given potential to any

desired level of accuracy.
6

Of course, the drawback to mim-

icking a smooth potential with a discontinuous one with

many steps is that the number of collision events that occur

in the system per unit time scales with the number of steps in

the potential. Hence, one would expect that the efficiency of

the simulation scales roughly inversely with the number of

steps in the interaction potential. Nonetheless, the issue is a

practical one: How small can the number of steps in the

interaction potential be such that one still gets a good de-

scription of the physics under investigation? In the accompa-

nying paper,
47

we will see for benzene and methane that it

takes surprisingly few steps !e.g., a hard core plus a square-

well interaction" to get results which are very close to those

of continuous molecular dynamics. Additionally, we will

compare the efficiency of such simulations to simulations

based on standard molecular dynamics methods.
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