Correlation between levels of ferritin and the ...



Title Correlation between levels of ferritin and the iron-containing component of ribonucleotide reductase in hydroxyurea-sensitive,hydroxyurea-resistant, and hydroxyurea-revertant cell lines
Author(s) Robert A. R. Hurta, J. A. Wright
Journal Biochemistry and Cell Biology / Biochimie Et Biologie Cellulaire
Date 1991
Volume 69
Issue 9
Start page 635
End page 642
Abstract The reduction of ribonucleotides to deoxyribonucleotides, a rate-limiting step in DNA synthesis, is catalyzed by ribonucleotide reductase. This enzyme is composed of two components, M1 and M2. Recent work has shown that inhibition of ribonucleotide reductase by the antitumor drug hydroxyurea leads to a destabilized iron centre in protein M2. We have examined the relationship between the levels of ferritin, the iron storage protein, and the iron-containing M2 component of ribonucleotide reductase. These studies were carried out with hydroxyurea-sensitive, -resistant, and -revertant cell lines. Hydroxyurea-resistant mouse L cells contained M2 gene amplification and elevated levels of enzyme activity, M2 message, and total cellular M2 protein concentration. Hydroxyurea-revertant cells exhibited a wild-type M2 gene copy number, and approximately wild-type levels of enzyme activity, M2 message, and M2 protein concentration. In addition, we observed that the hydroxyurea-resistant cells possessed elevated levels of L-chain ferritin message and total cellular H-chain ferritin protein when compared to wild-type cells. In contrast, the revertant cell population contained approximately wild-type levels of ferritin mRNA and protein. In keeping with these observations, obtained with mouse L cells, was the finding that hydroxyurea-resistant Chinese hamster ovary cells with increased ribonucleotide reductase activity exhibited elevated expression of both ferritin and M2 genes, which declined in drug-sensitive revertant hamster cell lines with decreased levels of ribonucleotide reductase activity. This is the first demonstration that reversion of hydroxyurea resistance and a decline in ribonucleotide reductase activity are accompanied by decreased ferritin expression, and supports the concept that ferritin is important in establishing resistance to hydroxyurea, and may play a role in DNA synthesis, through the regulation of functional iron-containing M2 protein levels required for ribonucleotide reduction.

Using APA 6th Edition citation style.

[Page generation failure. The bibliography processor requires a browser with Javascript enabled.]

Times viewed: 473

Adding this citation to "My List" will allow you to export this citation in other styles.