Inhibition of Kv2.1 voltage-dependent K+ channels in ...



Title Inhibition of Kv2.1 voltage-dependent K+ channels in pancreatic beta-cells enhances glucose-dependent insulin secretion
Author(s) P. E. MacDonald, S. Sewing, J. Wang, J. W. Joseph, S. R. Smukler, G. Sakellaropoulos, J. Wang, M. C. Saleh, Catherine B. Chan, R. G. Tsushima, A. M. Salapatek, M. B. Wheeler
Journal The Journal of Biological Chemistry
Date 2002
Volume 277
Issue 47
Start page 44938
End page 44945
Abstract Voltage-dependent (Kv) outward K(+) currents repolarize beta-cell action potentials during a glucose stimulus to limit Ca(2+) entry and insulin secretion. Dominant-negative "knockout" of Kv2 family channels enhances glucose-stimulated insulin secretion. Here we show that a putative Kv2.1 antagonist (C-1) stimulates insulin secretion from MIN6 insulinoma cells in a glucose- and dose-dependent manner while blocking voltage-dependent outward K(+) currents. C-1-blocked recombinant Kv2.1-mediated currents more specifically than currents mediated by Kv1, -3, and -4 family channels (Kv1.4, 3.1, 4.2). Additionally, C-1 had little effect on currents recorded from MIN6 cells expressing a dominant-negative Kv2.1 alpha-subunit. The insulinotropic effect of acute Kv2.1 inhibition resulted from enhanced membrane depolarization and augmented intracellular Ca(2+) responses to glucose. Immunohistochemical staining of mouse pancreas sections showed that expression of Kv2.1 correlated highly with insulin-containing beta-cells, consistent with the ability of C-1 to block voltage-dependent outward K(+) currents in isolated mouse beta-cells. Antagonism of Kv2.1 in an ex vivo perfused mouse pancreas model enhanced first- and second-phase insulin secretion, whereas glucagon secretion was unaffected. The present study demonstrates that Kv2.1 is an important component of beta-cell stimulus-secretion coupling, and a compound that enhances, but does not initiate, beta-cell electrical activity by acting on Kv2.1 would be a useful antidiabetic agent.
DOI 10.1074/jbc.M205532200

Using APA 6th Edition citation style.

[Page generation failure. The bibliography processor requires a browser with Javascript enabled.]

Times viewed: 547

Adding this citation to "My List" will allow you to export this citation in other styles.