Optical and acoustic properties at 1064 nm of ...



Title Optical and acoustic properties at 1064 nm of polyvinyl chloride-plastisol for use as a tissue phantom in biomedical optoacoustics
Author(s) G. M. Spirou, A. A. Oraevsky, I. A. Vitkin, William M. Whelan
Journal Physics in Medicine and Biology
Date 2005
Volume 50
Issue 14
Start page N141
End page N153
Abstract A novel optoacoustic phantom made of polyvinyl chloride-plastisol (PVCP) for optoacoustic studies is described. The optical and acoustic properties of PVCP were measured. Titanium dioxide (TiO2) powder and black plastic colour (BPC) were used to introduce scattering and absorption, respectively, in the phantoms. The optical absorption coefficient (mu(a)) at 1064 nm was determined using an optoacoustic method, while diffuse reflectance measurements were used to obtain the optical reduced scattering coefficient These optical properties were calculated to be mu(a) = (12.818 +/- 0.001)A(BPC) cm(-1) and mu'(s) = (2.6 +/- 0.2) S-TiO2 + (1.4 +/- 0.1) cm(-1), where A(BPC) is the BPC per cent volume concentration, and S-TiO2 is the TiO2 volume concentration (mg mL(-1)). The speed of sound in PVCP was measured to be (1.40 +/- 0.02) x 10(3) m s(-1) using the pulse echo transmit receive method, with an acoustic attenuation of (0.56 +/- 1.01) f(Mhz)((1.51 +/- 0.06))(dB cm(-1)) in the frequency range of 0.61-1.25 MHz, and a density, calculated by measuring the displacement of water, of 1.00 +/- 0.04 g cm(-3). The speed of sound and density of PVCP are similar to tissue, and together with the user-adjustable optical properties, make this material well suited for developing tissue-equivalent phantoms for biomedical optoacoustics.
DOI 10.1088/0031-9155/50/14/N01

Using APA 6th Edition citation style.

[Page generation failure. The bibliography processor requires a browser with Javascript enabled.]

Times viewed: 425

Adding this citation to "My List" will allow you to export this citation in other styles.