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We introduce the intex density X!R ,u", which combines both the intracular and extracular

coordinates to yield a simultaneous probability density for the position of the center-of-mass radius

!R" and relative separation !u" of electron pairs. One of the principle applications of the intex

density is to investigate the origin of the recently observed secondary Coulomb hole. The Hartree–

Fock !HF" intex densities for the helium atom and heliumlike ions are symmetric functions that may

be used to prove the isomorphism 2I!2R"=E!R", where I!u" is the intracule density and E!R" is the

extracule density. This is not true of the densities that we have constructed from explicitly correlated

wave functions. The difference between these asymmetric functions and their symmetric HF

counterparts produces a topologically rich intex correlation hole. From the intex hole distributions

!Xexact!R ,u"−XHF!R ,u"", we conclude that the probability of observing an electron pair with a very

large interelectronic separation increases with the inclusion of correlation only when their

center-of-mass radius is close to half of their separation. © 2010 American Institute of Physics.

#doi:10.1063/1.3499316$

I. INTRODUCTION

In any chemical system having more than a single elec-

tron the motions of the electrons are correlated in such a way

that they naturally avoid one another. The accurate nonrela-

tivistic mathematical description of this phenomenon re-

quires one to solve the many-electron Schrödinger equation,
1

but unfortunately this has not been achieved for chemical

systems even as small as the helium atom and thus we are

forced to approximate its solutions for such cases. The most

common way to do this is to employ the Hartree–Fock !HF"
approximation, which is a “mean-field” approximation in

that it treats the repulsion of electrons in an average way and

thus their motions are statistically independent and uncorre-

lated. The difference between the exact energy of a system

and that predicted by HF theory is known as the correlation

energy
2

and developing accurate methods of obtaining the

correlation energy continues to be a central theme of re-

search in theoretical chemistry and physics.
3

The study of electron pair distributions is a useful way to

gain insight into the phenomenon of electron correlation.
4–14

The probability density for the interelectronic separation

variable u= %r1−r2% is known as the radial intracule density,

I!u". Comparison of correlated and HF intracules demon-

strates how average distances between pairs of electrons

change with correlation, which is important information

when developing new correlation models.
4,10

The Coulomb hole

!I!u" = Iexact!u" − IHF!u" !1"

was first described by Coulson and Neilson
4

and in studying

!I!u" it is generally found that correlation facilitates an in-

crease in electron repulsion and, as a consequence, electrons

get further apart. However, we recently reported results for

the helium atom and heliumlike ions showing that when

electrons are at greater distances from one another !e.g., u

"3.6 for He" correlation actually brings them closer

together.
5

This so called “secondary Coulomb hole” was sub-

sequently observed for the H2 molecule
15

and is amplified as

the bond in H2 is stretched.

It would be invaluable to know more about where the

electrons are in the case that correlation induces a contrac-

tion of their distribution. This information is impossible to

obtain from the radial intracule density alone, as it only mea-

sures relative distances between electrons and not their ab-

solute location. The location of an electron pair however may

be probed using its center-of-mass vector R= !1 /2"!r1+r2"
16,17

and thus it would be advantageous to develop a simul-

taneous probability density for both of these coordinates. In

the current work, we will be concerned with deriving such a

density for the ground state of the helium atom and helium-

like ions. Thus, for simplicity, we need only consider the

radial component of the extracule coordinate R= !1 /2"%r1

+r2%.
The simultaneous probability of finding two electrons at

a certain distance, u, apart and with their center-of-mass lo-

cated at a radius of R is described by

X!R,u" = &#%$!R −
1

2 %r1 + r2%"$!u − %r1 − r2%"%#' , !2"

where # is the wave function and $!x" is a one-dimensional

Dirac delta function. Because this density combines both

relative !intracular" and absolute !extracular" position infor-

mation to more completely describe the spatial distribution

of electron pairs, we refer to X!R ,u" as the intex density.

The purpose of this article is to introduce the intex den-

sity and subsequently determine the intex correlation holesa"
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of the ground states of the helium atom and heliumlike ions,

defined as the difference between the exact and HF intex

densities. This provides the opportunity to obtain a deeper

understanding of the phenomenon of electron correlation;

more specifically, it will allow for a more complete descrip-

tion of the secondary Coulomb hole,
5,15

which demonstrates

the high utility of this novel probability density. Atomic units

are used throughout.

II. HARTREE–FOCK INTEX DENSITY

For an n-electron !n%2" system, the two-electron den-

sity

&!r1,r2" =
n!n − 1"

2
&#%$!r1! − r1"$!r2! − r2"%#' !3"

gives the probability that one electron will be found at r1 and

another at r2 simultaneously. The radial intracule and extra-

cule densities may be obtained from &!r1 ,r2" by

I!u" =( ( ( &!r1,r2"$!u − #r1 − r2$"dr1dr2d!u !4"

and

E!R" =( ( ( &!r1,r2"$)R −
1

2
#r1 + r2$*dr1dr2d!R,

!5"

respectively, where d!i denotes integration over the angular

components of vector i.

In a similar fashion, the intex density may be obtained

from the two-electron density by

X!R,u" =( ( ( ( &!r1,r2"$)R −
1

2
#r1 + r2$*

'$!u − #r1 − r2$"dr1dr2d!ud!R. !6"

This intex distribution leads naturally to the intracule and

extracule densities by

(
0

(

X!R,u"dR = I!u" , !7"

(
0

(

X!R,u"du = E!R" . !8"

If the two-particle density is obtained from a HF wave

function, the intex density may be expanded as

XHF!R,u" = +
)*+,

K

-)*+,
HF !)*+,"X, !9"

where -)*+,
HF represents the usual HF two-particle density

matrix element and !)*+,"X are the intex integrals over

atomic orbital basis functions denoted by ), *, +, and ,.

These integrals are given by

!)*+,"X =( ( .)
!)R −

u

2
*.*)R −

u

2
*

'.+
!)R +

u

2
*.,)R +

u

2
*d!ud!R. !10"

In the concentric case for two-electron systems where all

basis functions are Gaussians of s-type symmetry, Eq. !10"
may be integrated analytically as

!ssss"X

= 16/2R2u2e#!0+1+2+$"!R2+u2
/4"$sinh#Ru!0 + 1 − 2 − $"$

Ru!0 + 1 − 2 − $"
,

!11"

where 0, 1, 2, and $ represent the Gaussian exponents. Al-

ternatively, one may pursue other forms for . such as Slater

functions to enforce the nuclear-electronic cusp conditions.

However these are significantly more difficult to implement

and have been shown to have a minimal effect on intracules

when compared to an appropriately chosen set of

Gaussians.
18,19

In order to construct accurate HF intex distributions, we

employed a series of even-tempered basis sets proposed by

Schmidt and Ruedenberg
20

which utilize Gaussian primitives

with exponents given by

3k = 01k !k = 1,2, . . . ,K" , !12"

where

ln ln 1 = b ln K + b! !13"

and

ln 0 = a ln!1 − 1" + a!. !14"

The coefficients !a ,a! ,b ,b!" for all atoms from helium

through argon are available in the literature,
20

thus, it is

straightforward to construct a basis set containing any num-

ber of Gaussian functions, K. Atomic orbital coefficients

were then determined using the Q-CHEM package.
21

We have calculated XHF!R ,u" with basis sets up to K

=40 and find that the largest of these is satisfactorily con-

verged for the purposes of our investigation. This is demon-

strated by comparing the K=39 and K=40 intex densities

and calculating the maximum difference between the two as

maxu"0,R"0%X40
HF!R ,u"−X39

HF!R ,u"%=1.0'10−7, which we in-

terpret as a measure of the maximum basis set incomplete-

ness error in the K=40 intex density and this level of accu-

racy is more than sufficient to study fine correlation effects at

large u.
5

The HF intex density for the ground state of the helium

atom is shown in Fig. 1!a". The distribution has a global

maximum at u=0.891 and R=0.446 and monotonically de-

cays in all directions away from it. Interestingly, one can see

that the distribution is symmetric about the u=2R line.

Inspection of Eq. !11" reveals that XHF!R ,u"
=XHF!u /2,2R", confirming that the distribution is exactly

symmetric. This demonstrates a rigorous relationship be-

tween the HF intracule and extracule densities for spherically

symmetric systems in accordance with the isomorphisms for
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intracule and extracule densities reported elsewhere.
22–27

From an empirical relation, Koga found the approximate iso-

morphism d!R",8h!2R" for the spherically averaged extra-

cule and intracule densities,
22–26

where d!R"=EHF!R"
'!4/R2"−1 and h!u"= IHF!u"!4/u2"−1. Romera later con-

firmed that this expression was exact for systems with two-

electron densities of even parity.
27

Integrating our intex dis-

tribution !11" appropriately #Eqs. !7" and !8"$ provides a

simple alternative derivation for this isomorphism.

In addition to the ground state of the helium atom, we

have computed the HF intex densities for the ground states

of the heliumlike ions with atomic numbers Z=3 to 10. As in

several previous studies of this series,
5,28

the hydride ion, H−,

was omitted due to the difficulty in obtaining adequately

converged results. As expected, the maxima in the intex den-

sities shift to lower u and R with increasing charge on the

ions. The coordinates and magnitude of the maxima in the

intex densities are listed in Table I. Despite the contraction

toward the origin, the intex density for each ion of the He

isoelectronic series is qualitatively similar.

III. CORRELATED WAVE FUNCTION AND INTEX
DISTRIBUTION

In a previous paper,
5

we employed explicitly correlated

wave functions of the Hylleraas type
29

to produce correlated

intracules and the corresponding Coulomb holes. Unfortu-

nately, however, variationally optimized exponents and coef-

ficients of the Hylleraas expansions are not available in the

literature
9

for all of the ions in the isoelectronic series pre-

sented here and thus we have also explored a series of ex-

plicitly correlated wave functions based on those first de-

scribed by Kinoshita.
30

#Kin!r1,r2" = e−3s+
i=1

N

cis
li/2) t

u
*mi)u

s
*ni/2

, !15"

where s, t, and u are the Hylleraas coordinates defined as s

= %r1%+ %r2% , t= %r1%− %r2% and u= %r1−r2%. The exponents li, mi,

and ni are non-negative integers. These exponents, along

with the nonlinear parameter 3, and the linear parameters ci

may be variationally optimized and this has been reported

previously
31

for a variety of expansion sizes, N. The Ki-
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FIG. 1. !a" HF intex density of the helium atom. !b" Correlated intex density of the helium atom. Contours have magnitudes of 5n'10−2, where

n=1,2 ,3 , . . . ,20.

TABLE I. Coordinates !Rmax ,umax" and magnitude of the maxima in the HF and correlated intex densities for

the helium isoelectronic series.

Ion Z !Rmax ,umax"HF XHF!Rmax ,umax" !Rmax ,umax"Exact XExact!Rmax ,umax"

He 2 !0.446, 0.891" 1.031 !0.468, 0.978" 1.045

Li+ 3 !0.282, 0.564" 2.680 !0.290, 0.598" 2.711

Be2+ 4 !0.206, 0.413" 5.099 !0.210, 0.430" 5.147

B3+ 5 !0.163, 0.325" 8.291 !0.165, 0.336" 8.355

C4+ 6 !0.134, 0.268" 12.253 !0.136, 0.275" 12.334

N5+ 7 !0.114, 0.228" 16.987 !0.115, 0.234" 17.084

O6+ 8 !0.099, 0.199" 22.492 !0.100, 0.203" 22.605

F7+ 9 !0.088, 0.176" 28.769 !0.089, 0.179" 28.898

Ne8+ 10 !0.079, 0.158" 35.817 !0.079, 0.160" 35.962

134113-3 The intex density J. Chem. Phys. 133, 134113 "2010!



noshita wave function employed here uses half-integer pow-

ers, which was demonstrated to significantly improve the ac-

curacy of the expansion.
31

Using an expansion of only N

=100 terms, the wave function reproduces an energy for the

ground state of the helium atom to within 1 phartree of the

exact value
31

which exceeds the accuracy of the previously

reported Hylleraas wave functions.
9

With the u variable already incorporated into the wave

function, the extracule variable, R, may be related to these

expressions by the equality

4R2 = s2 + t2 − u2. !16"

Changing to Hylleraas coordinates and integrating over the

three external angles gives

dr1dr2 →

4/2Ru!4R2 + u2 − 2t2"

-4R2 + u2 − t2
dtdRdu !17"

and integration of the resultant expression over t affords the

intex density. These expressions were integrated numerically

using the built-in numerical integrator in the MATHEMATICA

package.
32

Figure 1!b" illustrates the intex density obtained using

the 100-term Kinoshita wave function. Although, like in the

case of HF, the correlated intex density appears symmetric

about the u=2R line, close inspection of Eq. !15" shows that

the intex density obtained from these correlated functions

will not possess such exact symmetry. This asymmetry is

more clearly evident in the intex correlation hole !vide infra"
and in the data provided in Table I. From this data, it is

clearly seen that, in addition to other effects, correlation

causes a deviation in the maxima from this line of symmetry.

IV. INTEX CORRELATION HOLE

The intex density is a valuable quantity to describe cor-

relation effects in atomic and molecular systems due to its

inherent relative !intracule density" and absolute !extracule

density" position information. Figure 2 displays the intex

correlation hole for the ground state of the helium atom,

!X!R ,u", which is given by

!X!R,u" = Xexact!R,u" − XHF!R,u" , !18"

as well as the usual Coulomb hole
5

calculated by

(
0

(

!X!R,u"dR = !I!u" . !19"

From Fig. 2 we observe two negative regions bisected by

a positive region in the correlation hole. A negative value of

!X!R ,u" indicates a decrease in probability due to the ef-

fects of electron correlation whereas a positive value of

!X!R ,u" indicates an increase in probability. Because each

intex density is normalized to the number of electron pairs,

the integral

( ( !X!R,u"dRdu = 0 !20"

vanishes and thus the size of both negative regions is exactly

proportional to that of the positive one. The positive region

reaches a maximum value of 0.092 at R=0.520 and u

=1.417 and this area extends along the u=2R line, creating a

ridge. The first negative region, which mainly occurs at small

u, reaches a minimum value of 0.109 at R=0.344 and u

=0.562 !min I". The second negative region is far more shal-

low than the first and reaches a minimum value of 0.0008 at

R=0.886 and u=3.786 !min II".
The Coulomb hole for the helium atom

5 !see Fig. 2" is

equal to zero at u=1.1 and u=3.6 and the conclusion is that

the effects of correlation make it less favorable for electrons

to be closer than 1.1 a.u. or farther apart than 3.6 a.u. While

the former is more intuitive than the latter, the results are
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FIG. 2. !a" The intex correlation hole, !X!R ,u", for the ground state of the helium atom. Contours have values of 42'10−n, 44'10−n, and 48'10−m,

where n=2,3 ,4 ,5 and m=2,3 ,4 ,5 ,6. Positive contours are denoted by solid lines whereas negative contours are denoted by dashed lines. !b" The Coulomb

hole, !I!u", for the ground state of the helium atom.
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clear and the intex density offers additional insight into such

a phenomenon. Perhaps not surprisingly, it would appear as

though the relative separation of an electron pair does not

universally indicate whether correlation will act to separate

or contract the pair. The absolute position of the electron pair

is an important quantity, as is evidenced by the rich topology

of the intex density in both the u and R dimensions. Evi-

dently, correlation can increase the probability of finding

electrons separated by large distances !u"3.6" so long as

their center-of-mass is close to !1 /2"u. However this is out-

weighed by the secondary Coulomb hole behavior exhibited

by electrons where u.4R and u.R. Additionally, when u

5R, which implies that the electron pair is on the same side

of the nucleus, the intex correlation hole is always negative.

This feature indicates that in such cases correlation will al-

ways act to either separate the electrons or move their center-

of-mass closer to the origin !or both".
The intex correlation holes were also determined for the

helium isoelectronic series up to Ne8+ and as expected, the

features of !X!R ,u" contract toward the origin as the atomic

number and nuclear charge increase. As with the case of the

Coulomb holes of this series,
5

the intex correlation holes are

all qualitatively similar and each system bears the same to-

pological features. Table II summarizes the extrema of the

correlation holes and lists the strengths of the secondary

Coulomb holes defined by

S = (
ū2

(

%!I!u"%du , !21"

where ū2 is the second root of !I!u". S is well defined for all

of the systems under investigation in the current work be-

cause all exhibit a second root ū2 and it appears as though

such secondary Coulomb holes may be ubiquitous in two-

electron systems.
5,15,33

S has been reported previously for

Z-scaled intracules
5

for He, Li+, Be2+, B3+, and Ne8+ and all

are in exact agreement with those in Table II upon introduc-

tion of the scaling factor, Z. The additional data for C4+, N5+,

O6+, and F7+ confirm the trend that the proportion of the

secondary Coulomb hole diminishes with increasing Z.

V. CONCLUDING REMARKS

We have introduced a novel electron pair distribution,

the intex density, which is defined by Eq. !2". This new den-

sity employs both the intracular and extracular coordinates to

more completely describe the probability distributions of

electron pairs in position space. Using even-tempered basis

sets of 40 s-type Gaussians, we have calculated the HF intex

distribution of the ground state heliumlike ions from He to

Ne8+. In all of these cases we note that the intex distribution

is identically symmetrical about the line u=2R, implying the

previously described
22–27

relation 2I!2R"=E!R".
A correlated treatment of the intex density was per-

formed using Kinoshita type wave functions. Unlike the HF

intex density, the correlated intex density is not symmetric

about the u=2R line. Using the correlated intex densities, we

were able to determine the intex correlation hole for the

ground state of the helium atom and the helium isoelectronic

series. The intex correlation hole provides us with a more

complete picture of the effects of electron correlation on the

spatial distribution of electron pairs in an atomic system.

Specifically, we observe that the secondary Coulomb hole is

not universal; it does not occur at all large values of u, but

instead is dependent on the center-of-mass of the electron

pair. We conclude that the probability of observing an elec-

tron pair with a very large interelectronic separation in-

creases with the inclusion of correlation only when their

center-of-mass radius is close to half of their separation. It

would be reasonable to conjecture that in such cases, one

electron remains close to the nucleus while the second is far

away and this may be elucidated further by considering the

probability distribution of the angle between the interelec-

tronic separation and center-of-mass vectors. Additionally, it

has been shown that part of the effects of correlation in these

systems is to decrease the probability of observing u5R

!i.e., both electrons on the same side of the nucleus".
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