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We study smooth transformations V(r)�g(�1/r)� f (1/r2) of Kratzer’s potential �a/r�b/r2 in

N�2 spatial dimensions. Eigenvalue approximation formulas are obtained which provide lower or

upper energy bounds for all the discrete energy eigenvalues Enl and all N�2, corresponding,

respectively, to the two cases that the transformation functions g and f are either both convex

(g��0) and f ��0) or both concave (g��0 and f ��0). Detailed results are presented for

V(r)��a/r�b/r� and V(r)��(v/r)�1�ar/(1�r)��b/r2. © 1998 American Institute of

Physics. �S0021-9606�98�00332-8�

I. INTRODUCTION AND MAIN RESULT

Considerable interest has recently been shown in

Kratzer’s potential1,2 as a model to describe internuclear

vibration.3–6 This potential can be expressed in the form

U�r ���
a

r
�

b

r2
, a ,b�0. �1�

It was also introduced7–11 because it had some very general

features of a molecular potential, and it was exactly soluble.

In this paper we study smooth transformations V(r) of

Kratzer’s potential with the general form

V�r �� f � �
1

r
��g� 1

r2� , �2�

where the transformation functions f and g are smooth. This

wider family of potentials includes examples of more physi-

cal significance such as

V�r ���
a

r
�

b

r�
, b�0, �3�

which have been studied recently12–15 as Coulomb problems

with singular perturbations. The advantages of our approach

are: �a� Our analytical expressions, which are obtained by a

simple extremization over one or two variables, indicate ap-

proximately how the eigenvalues depend on all the param-

eters of the potential; �b� whenever the transformation func-

tions f and g are either both convex or both concave �in the

sense that f � and g�are both positive or are both negative�,
the approximations provide, respectively, lower and upper

energy bounds on all the discrete eigenvalues; �c� from the

point of view of energy levels, the method selects a ‘‘best’’

Kratzer potential to approximate the problem studied which

in turn leads to a ‘‘best set’’ of Kratzer wave functions that

can be used as a basis set for closer approximations;3–9 �d� in

all the eigenvalue formulas the number N�2 of spatial di-

mensions is a free parameter. This last feature, although usu-

ally not important for ‘‘real’’ applications, may be useful

indirectly as a generator of test problems for the so-called

large-N approximation.

The existence of bound states for Eq. �1� depends16 on

the presence of the term �a/r which has an infinite discrete

spectrum bounded above by zero for any a�0. The exact

solutions of Schrödinger’s equation with Kratzer’s potential

are given in terms of confluent hypergeometric

functions.17–19 Landau and Lifshitz,19 for example, showed

that the discrete energy spectrum for Kratzer potential is

given �in units ��2m�1� by

�nl��
a2

�2n�1���2l�1 �2
�4b �2

, n ,l�0,1,2, . . . .

�4�

It is interesting to extend these exact solutions to the N-

dimensional case, which can be done20 by replacing l in Eq.

�4� with l�N/2�3/2. Indeed, these exact solutions could be

generated from the well-known solutions of Coulomb poten-

tial by the following two simple transformations: First re-

place the angular momentum l in the Coulomb energy

expression by �
1
2��(l�

1
2)2

�b , then replace l with l

�N/2�3/2. Thus the exact eigenvalues of the N-

dimensional Schrödinger equation with the Kratzer’s poten-

tial are

�nl��
a2

4�n�
1
2��� l�N/2�1 �2

�b �2
, n ,l�0,1,2, . . . .

�5�

The purpose of this article is to use such solutions to inves-

tigate the discrete spectrum of the N-dimensional Schrö-

dinger equation

����V�r ����Enl� ,  �6�

where V(r) is given by Eq. �2�. We shall show in Sec. II that

Enl can be approximated by the expression

�nl�s ,t ��g� �
1

s
��

g���1/s �

s
� f � 1

t2� �
f ��1/t2�

t2

�
�g���1/s ��2

4�n�
1
2��� l�N/2��1 �2

� f ��1/t2�)2
, �7�a�Present address: Department of Mathematics, Notre Dame University,
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where the extreme value �min or max� of �nl(s ,t) provides a

lower bound or an upper bound to the corresponding exact

eigenvalue when the transformation functions g and f are,

respectively, either both convex or both concave �that is to

say, g� and f �are both positive or both negative�. This allows

us, for example, to obtain simple expressions which bound

the discrete spectrum of the generalized Kratzer’s potential

V(r)��(a/r)�(b/r�), ��0, for all dimensions N�2.

II. TRANSFORMED POTENTIALS

We consider the Schrödinger equation

����V�r ����Enl� ,  �8�

V�r ��g� �
1

r
�� f � 1

r2� ,  �9�

in N-dimensions, where g and f are smooth transformations

of �1/r and 1/r2, respectively. For example, when g and f

are identity transformations, the problem has the exact solu-

tion �5� for all n, l, and arbitrary positive values of a and b in

all dimensions.

The core of our technique lies in noticing that each term

of the potential �9� can be approximated by its tangential

approximation. That is to say, we replace g and f in Eq. �9�
by

g �s �� �
1

r
��a�s ��

b�s �

r
,

�10�

f � t �� 1

r2� �c� t ��
d� t �

r2
,

respectively, where s is a contact point between g(�1/r) and

its tangent approximation g (s)(1/r2), and t plays a similar

role for f. Elementary analysis implies that V(r) in Eq. �9�
can thus be approximated by

V �s ,t ��r ��g� �
1

s
��

g���1/s �

s
� f � 1

t2� �
f ��1/t2�

t2

�
g���1/s �

r
�

f ��1/t2�

r2
. �11�

This two-parameter family of ‘‘tangent’’ potentials generates

the so-called ‘‘envelope representation’’ for V(r) expressed

by

V�r ��Envelope
s ,t�0

�V �s ,t ��r ��.

With this representation of V(r), we may use the energy

expression �5� for the eigenvalues of the Schrödinger equa-

tion

����V �s ,t ��r �����nl�s ,t �� . �12�

which implies that �nl(s ,t)is given by Eq. �7�. Now an ap-

plication of the comparison theorem in quantum mechanics

allow us to conclude the following. For the eigenvalues Enl

of the Schrödinger Eq. �8�, we have

�a� Enl��nl�s ,t � if g� and f � are both positive.

�b� Enl��nl�s ,t � if g� and f � are both negative.

The proof of this claim is obtained by the following simple

argument. For definiteness we consider case �a�. Since g and

f are convex (g� and f � are both positive�, their graphs lie

above their tangents. Consequently, we have from Eq. �11�
that V (s ,t)(r)�V(r)�s , t�0. Case �a� then follows by an

application of the comparison theorem. Case �b� is proved in

analogous way if ‘‘convex’’ is replaced by ‘‘concave’’ (g�

and f � are both negative�. It is appropriate to mention here

that the conclusions follow in the special cases that either f or

g is the identity transformation. These bounds may, of

course, be sharpened by optimization with respect to s and t,

and moreover they are valid for the entire discrete spectrum

n ,l�0.

III. NUMERICAL RESULTS AND CONCLUSION

One of the interesting points concerning the bounds we

have obtained in the previous section is the large variety of

approximations made possible by different choices of the

transformations g and f. We consider, for example, the case

where g(�1/r)��a/r and f (1/r2)�b/r� yields the gener-

alized Kratzer potential �3�. From Eqs. �8� and �12� we find

that

Enl��nl� t �, where �nl� � t̂ ��0

and from Eq. �7�

�nl� t ��� 1�
�

2
� b

t�

�
a2

4�n�
1
2��� l�N/2�1 �2

��b/2t��2�2
. �13�

This function is convex in t ��nl� (t)�0� for ��2 the maxi-

mum providing a lower energy bound, and concave ��nl� (t)

�0� for ��2 yielding an upper energy bound. In Table I we

exhibit some results of the upper and lower bounds derived

from Eq. �13� for a�5, b�1, n�0, l�1, and for differ-

ent values of � in three-dimensional space, along with some

accurate values obtained by direct numerical integration of

TABLE I. Some lower bounds E01
L and upper bounds E01

U using Eq. �13� for

H����5/r�1/r� in three-dimensions with l�1. The ‘‘exact’’ values E01

were obtained by direct numerical integration of Schrödinger’s equation.

� E01
L E01 E01

U

1.5 ¯ �1.111 34 �1.073 66

1.6 ¯ �1.127 68 �1.097 39

1.7 ¯ �1.142 44 �1.119 66

1.8 ¯ �1.155 77 �1.140 56

1.9 ¯ �1.167 79 �1.160 19

2 �1.178 63 �1.178 63 �1.178 63

2.1 �1.195 96 �1.188 38 ¯

2.2 �1.212 28 �1.197 18 ¯

2.3 �1.227 65 �1.205 08 ¯

2.4 �1.242 14 �1.212 19 ¯

2.5 �1.255 81 �1.218 58 ¯
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Schrödinger’s equation. The graph of �01(t) is displayed in

Fig. 1 along with the exact eigenvalue E and corresponding

unnormalized wavefunction in three-dimensions for Schröd-

inger’s equation with V(r)��5/r�1/r2.1. The main advan-

tage of an analytic approximation such as Eq. �13� is that

questions to do with the dependence of the eigenvalues on

the potential parameters are easy to answer. For example, in

Fig. 2, we plot the lower bound obtained by Eq. �13�, for

��2.1 and for a�5, as a function of the parameter b, along

with some exact eigenvalues obtained by direct numerical

integration. In Table II we exhibit the results of the lower

bounds obtained by use of formula �13� for ��2.1 and for

a�5, b�1 for the dimensions N�2 to N�10, along with

some accurate values obtained by direct numerical integra-

tion of Schrödinger’s equation.

As another example we consider g(�1/r)��v/r�1

�ar/(1�r)� where v and a�1 are positive parameters and

f (1/r2)�b/r2. In this case g is the well known screened

Coulomb potential21,22 which is almost Coulombic every-

where for it is like �v/r for small r and like �v(1�a)/r

for large r. Therefore it becomes very effective to represent

the screened Coulomb potential as a smooth �concave� trans-

formation of �1/r . For this choice of g and f we have from

Eq. �7� that

�nl�s ��
av

�1�s �2
�

v
2�1�as2/�1�s �2�2

4�n�
1
2��� l�N/2��1 �2

�b)2
,

�14�

which is concave in s �that is to say, it has a negative second

derivative�; in this case, �nl(s)leads to a simple upper-bound

energy formula valid for all n, l, and arbitrary dimension N

�2. These upper bounds indicate approximately how the ei-

genvalues Enl depend on all the potential parameters. We

display some results obtained by formula �14� in Table III

for v�5, a�0.5, and b�1 in dimension N�2 – 10. It is

appropriate to mention here that in the limit as b→0 we

recover the Coulomb envelopes23 used for the special case

N�3.

For the bottom of each angular-momentum subspace the

bounds we have obtained can be improved by the use of a

refined version of the comparison theorem.24 However, the

main point of the approach described in this paper is to pro-

vide a way to generate simple general approximate energy

formulas to be used for exploratory purposes and for ‘‘seed-

ing’’ direct numerical methods. Meanwhile, the Kratzer class

of wave functions obtained are already optimally adapted to

the problem at hand and, therefore, provide a best set of basis

wave functions for higher-order perturbative or variational

calculations.3–9

FIG. 1. Graph of e(t)��01(t) along with the exact eigenvalue E and cor-

responding unnormalized wave function in three-dimensions.

FIG. 2. The graph of the lower bound E00
L obtained by Eq. �13� as a function

of the parameter b, along with some exact eigenvalues E00 obtained by

direct numerical integration.

TABLE II. Lower bounds E00
L using Eq. �13� for H����(5/r)�(1/r2.1)

for dimension N�2 – 10. The ‘‘exact’’ values E00 were obtained by direct

numerical integration of Schrödinger’s equation.

N E00
L E00

2 �2.728 16 �2.650 75

3 �2.371 92 �2.319 71

4 �1.720 24 �1.699 15

5 �1.195 96 �1.188 39

6 �0.847 88 �0.844 98

7 �0.622 07 �0.620 84

8 �0.472 00 �0.471 43

9 �0.368 78 �0.368 49

10 �0.295 33 �0.295 17

TABLE III. Upper bounds E00
U using Eq. �14� for H����5/r�1

�(0.5r)/(1�r)��1/r2 for dimension N�2 – 10. The ‘‘exact’’ values E00

were obtained by direct numerical integration of Schrödinger’s equation.

N E00 E00
U

2 �1.598 63 �1.502 02

3 �1.296 02 �1.213 58

4 �0.808 11 �0.754 90

5 �0.481 10 �0.452 67

6 �0.300 88 �0.286 88

7 �0.201 54 �0.194 66

8 �0.143 49 �0.139 97

9 �0.107 23 �0.105 33

10 �0.083 20 �0.082 12
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