Ionic mechanism of electrical alternans



Title Ionic mechanism of electrical alternans
Author(s) Jeffrey J. Fox, Jennifer L. McHarg, Robert F.,,Jr Gilmour
Journal American Journal of Physiology. Heart and Circulatory Physiology
Date 2002
Volume 282
Issue 2
Start page 516
End page H530
Abstract Although alternans of action potential duration (APD) is a robust feature of the rapidly paced canine ventricle, currently available ionic models of cardiac myocytes do not recreate this phenomenon. To address this problem, we developed a new ionic model using formulations of currents based on previous models and recent experimental data. Compared with existing models, the inward rectifier K(+) current (I(K1)) was decreased at depolarized potentials, the maximum conductance and rectification of the rapid component of the delayed rectifier K(+) current (I(Kr)) were increased, and I(Kr) activation kinetics were slowed. The slow component of the delayed rectifier K(+) current (I(Ks)) was increased in magnitude and activation shifted to less positive voltages, and the L-type Ca(2+) current (I(Ca)) was modified to produce a smaller, more rapidly inactivating current. Finally, a simplified form of intracellular calcium dynamics was adopted. In this model, APD alternans occurred at cycle lengths = 150-210 ms, with a maximum alternans amplitude of 39 ms. APD alternans was suppressed by decreasing I(Ca) magnitude or calcium-induced inactivation and by increasing the magnitude of I(K1), I(Kr), or I(Ks). These results establish an ionic basis for APD alternans, which should facilitate the development of pharmacological approaches to eliminating alternans.

Using APA 6th Edition citation style.

[Page generation failure. The bibliography processor requires a browser with Javascript enabled.]

Times viewed: 432

Adding this citation to "My List" will allow you to export this citation in other styles.