- Your Search:
- Faculty Identifier:nsaad
*[x]*

- Faculty Identifier:nsaad
- Limited to:
- no limits selected

# Results

[Page generation failure. The bibliography processor requires a browser with Javascript enabled.] Using the orthonormality of the 2D-Zernike polynomials reproducing kernels, reproducing kernel Hilbert spaces and ensuing coherent states are attained. With the aid of the so obtained coherent states the complex unit disc is quantized. Associated upper symbols, lower symbols and related generalized ... |

[Page generation failure. The bibliography processor requires a browser with Javascript enabled.] |

[Page generation failure. The bibliography processor requires a browser with Javascript enabled.] |

[Page generation failure. The bibliography processor requires a browser with Javascript enabled.] |

[Page generation failure. The bibliography processor requires a browser with Javascript enabled.] |

[Page generation failure. The bibliography processor requires a browser with Javascript enabled.] A simple formula for computing the generalized Hubbell radiation rectangular source integralis introduced. Tables are given to compare the numerical values derived from our approximation formula with those given earlier in the literature. |

[Page generation failure. The bibliography processor requires a browser with Javascript enabled.] |

[Page generation failure. The bibliography processor requires a browser with Javascript enabled.] |

[Page generation failure. The bibliography processor requires a browser with Javascript enabled.] Infinite series, Sigma(n=1)(infinity) (alpha/2)(n)/n 1/n! F-1(1)(-n, gamma, x(2)), where F-1(1)(-n, gamma, x(2)) = n!/(gamma)(n) L-n((gamma-1))(x(2)), appear in the first-order perturbation correction for the wavefunction of the generalized spiked harmonic oscillator Hamiltonian H = -d(2)/dx(2) + Bx... |

[Page generation failure. The bibliography processor requires a browser with Javascript enabled.] Infinite series of the type Sigma(n=1)(infinity)(alpha/2)n/n 1/n!F-2(1)(-n,b;gamma;y) are investigated. Closed-form sums are obtained for alpha a positive integer, alpha = 1, 2, 3,.... The limiting case of b --> infinity, after gamma is replaced with x(2)/b, leads to Sigma(n=1)(infinity)(alpha/2)... |

[Page generation failure. The bibliography processor requires a browser with Javascript enabled.] |

[Page generation failure. The bibliography processor requires a browser with Javascript enabled.] |

[Page generation failure. The bibliography processor requires a browser with Javascript enabled.] |

[Page generation failure. The bibliography processor requires a browser with Javascript enabled.] |

[Page generation failure. The bibliography processor requires a browser with Javascript enabled.] |

[Page generation failure. The bibliography processor requires a browser with Javascript enabled.] |

[Page generation failure. The bibliography processor requires a browser with Javascript enabled.] |

[Page generation failure. The bibliography processor requires a browser with Javascript enabled.] |

[Page generation failure. The bibliography processor requires a browser with Javascript enabled.] |

[Page generation failure. The bibliography processor requires a browser with Javascript enabled.] |

[Page generation failure. The bibliography processor requires a browser with Javascript enabled.] |

[Page generation failure. The bibliography processor requires a browser with Javascript enabled.] |

[Page generation failure. The bibliography processor requires a browser with Javascript enabled.] The asymptotic iteration method is used to find exact and approximate solutions of Schrödinger’s equation for a number of one-dimensional trigonometric potentials (sine-squared, double-cosine, tangent-squared, and complex cotangent). Analytic and approximate solutions are obtained by first using ... |

[Page generation failure. The bibliography processor requires a browser with Javascript enabled.] The one-dimensional Schr ̈odinger’s equation is analysed w
ith regard to the existence of
exact solutions for decatic polynomial potentials. Under c
ertain conditions on the potential’s pa-
rameters, we show that the decatic polynomial potential
V
(
x
) =
ax
10
+
bx
8
+
cx
6
+
dx
4
+
ex
2
,
a >... |

[Page generation failure. The bibliography processor requires a browser with Javascript enabled.] |